月度归档:2019年11月

AINLP公众号增加"狗屁不通文章生成器"

最近比较火的一个Github项目是:狗屁不通文章生成器(https://github.com/menzi11/BullshitGenerator),虽然和自然语言生成有点关系,但是代码其实和自然语言处理基本无关,或者说作者用了一点trick和规则,不过项目本身还是很有意思的:

BullshitGenerator

本项目为python3版本, 还有由suulnnka修改在线版, 使用更加方便: https://suulnnka.github.io/BullshitGenerator/index.html

下一步计划:

防止文章过于内容重复
加入更多啰嗦话.
加入马三立<开会迷>里的内容
加入手写体直接渲染出图片的功能(仅仅用于测试本人的打印机是否工作正常, 请勿做它用).
关于Pull requests:
鄙人每个requests都会仔细阅读, 但因近期事情较多, merge未必及时, 毕竟是业余项目, 请大家见谅. 如果未来实在更新不及时, 也欢迎有志之士替代本人继续本项目.

关于中文变量名:
平时撸码鄙人是不写中文变量名的, 本项目中的中文变量名只是最开始瞎写的时候边写语料边写代码时懒得切英文输入法了. 不过既然如此就保持吧!

关于生成算法
鄙人才疏学浅并不会任何自然语言处理相关算法. 而且目前比较偏爱简单有效的方式达到目的方式. 除非撞到了天花板, 否则暂时不会引入任何神经网络等算法. 不过欢迎任何人另开分支实现更复杂, 效果更好的算法. 不过除非效果拔群, 否则鄙人暂时不会融合.

这套代码不复杂,我把这套“狗屁不通文章生成器”对接到AINLP公众号后台了,做了一点修改,并且将生成字数限制在500字了,方便微信查看,感兴趣的同学可以关注AINLP,对话回复“狗屁不通文章:主题句”:

例如我输入“狗屁不通文章:自然语言处理”,生成了这样一段废话:

吉姆·罗恩在不经意间这样说过,要么你主宰生活,要么你被生活主宰。这句话把我们带到了一个新的维度去思考这个问题: 不难发现,在当今社会中,越来越多的人开始自然语言处理。自然语言处理,发生了会如何,不发生又会如何。我们都知道,只要有意义,那么就必须慎重考虑。了解清楚自然语言处理到底是一种怎么样的存在,是解决一切问题的关键。自然语言处理的发生,到底需要如何做到,不自然语言处理的发生,又会如何产生。德国曾经说过,只有在人群中间,才能认识自己。我希望诸位也能好好地体会这句话。 那么,总结地来说,这种事实对本人来说意义重大,相信对这个世界也是有一定意义的。我强烈建议自然语言处理,对我个人而言,自然语言处理不仅仅是一个重大的事件,还可能会改变我的人生。自然语言处理的发生,到底需要如何做到,不自然语言处理的发生,又会如何产生。我强烈建议自然语言处理,我们一般认为,抓住了问题的关键,其他一切就会迎刃而解。问题的关键究竟为何?这种事实对本人来说意义重大,相信对这个世界也是有一定意义的。要想清楚,自然语言处理,到底是一种怎么样的存在。马克思曾经说过,一切节省,归根到底都归结为时间的节省。这句话语虽然很短,但令我浮想联翩。 屠格涅夫曾经提到过,凡事只要看得淡些,就没有什么可忧虑的了;只要不因愤怒而夸大事态,就没有什么事情值得生气的了。我希望诸位也能好好地体会这句话。

微信公众号对话是这样的:

注:原创文章,转载请注明出处及保留链接“我爱自然语言处理”:http://www.52nlp.cn

本文链接地址:AINLP公众号增加"狗屁不通文章生成器" http://www.52nlp.cn/?p=12405

200行写一个自动微分工具

简介

机器学习工具包(PyTorch/TensorFlow)一般都具有自动微分(Automatic Differentiation)机制,微分求解方法包括手动求解法(Manual Differentiation)、数值微分法(Numerical Differentiation)、符号微法(Symbolic Differentiation)、自动微分法(Automatic Differentiation),具体的详细介绍可以参见自动微分(Automatic Differentiation)简介,这里主要说一下自动微分法的实现。

自动微分法实现

github地址:https://github.com/tiandiweizun/autodiff

git上有不少自动微分的实现,如autograd等,这里还有一个特别简单的AutodiffEngine更适合作为教程,但AutodiffEngine是静态图,整个过程对于初学者还是有点复杂的,主要是不直观,于是动手autodiff写了一个简单的动态图的求导,里面的大部分算子的实现还是参照AutodiffEngine的。

设计:其实主要是2个类,一个类Tensor用于保存数据,另一个类OP支持forward和backward,然后各种具体的运算类,如加减乘除等继承OP,然后实现具体的forward和backward过程

过程:分为forward和backward两个过程,forward从前往后计算得到最终的输出,并返回新的tensor(如下图中的v1),新的tensor保存通过哪些子tensor(v-1),哪个具体的算子(ln)计算得到的(计算图),backward按照计算图计算梯度,并赋值给对应的子tensor(v-1)

实现:

先贴一点代码

class Tensor:
    def __init__(self, data, from_tensors=None, op=None, grad=None):
        self.data = data  # 数据
        self.from_tensors = from_tensors  # 是从什么Tensor得到的,保存计算图的历史
        self.op = op  # 操作符运算
        # 梯度
        if grad:
            self.grad = grad
        else:
            self.grad = numpy.zeros(self.data.shape) if isinstance(self.data, numpy.ndarray) else 0
    
    def __add__(self, other):
        # 先判断other是否是常数,然后再调用
        return add.forward([self, other]) if isinstance(other, Tensor) else add_with_const.forward([self, other])

    def backward(self, grad=None):
        # 判断y的梯度是否存在,如果不存在初始化和y.data一样类型的1的数据
        if grad is None:
            self.grad = grad = numpy.ones(self.data.shape) if isinstance(self.data, numpy.ndarray) else 1
        # 如果op不存在,则说明该Tensor为根节点,其from_tensors也必然不存在,否则计算梯度
        if self.op:
            grad = self.op.backward(self.from_tensors, grad)
        if self.from_tensors:
            for i in range(len(grad)):
                tensor = self.from_tensors[i]
                # 把梯度加给对应的子Tensor,因为该Tensor可能参与多个运算
                tensor.grad += grad[i]
                # 子Tensor进行后向过程
                tensor.backward(grad[i])

    # 清空梯度,训练的时候,每个batch应该清空梯度
    def zero_gard(self):
        self.grad = numpy.zeros(self.data.shape) if isinstance(self.data, numpy.ndarray) else 0
class OP:
    def forward(self, from_tensors):
        pass

    def backward(self, from_tensors, grad):
        pass


class Add(OP):
    def forward(self, from_tensors):
        return Tensor(from_tensors[0].data + from_tensors[1].data, from_tensors, self)

    def backward(self, from_tensors, grad):
        return [grad, grad]


add = Add()

这里以加法为例,讲一下具体的实现。

Tensor类有四个属性,分别用于保存数据、子Tensor、操作符、梯度,OP类有两个方法,分别是forward和backword,其中Add类继承OP,实现了具体的forward和backword过程,然后Tensor重载了加法运算,如果是两个Tensor相加,则调用Add内部的forward。

x1_val = 2 * np.ones(3)
x2_val = 3 * np.ones(3)
x1 = Tensor(x1_val)
x2 = Tensor(x2_val)
# x1+x2 调用了Add的forward方法,并用[5,5,5]、x1与x2、加法操作构造新的Tensor,然后赋值给y
y = x1 + x2
assert np.array_equal(y.data, x1_val + x2_val)

backward过程先是计算梯度,然后把梯度赋值给各个子Tensor

# 判断梯度是否存在,此时不存在则初始化为[1,1,1]
# 调用Add的backward计算得到梯度[[1,1,1],[1,1,1]]
# 把梯度累加给对应的子Tensor,并调用x1和x2的backward
# 由于此时梯度存在,则不需要初始化
# 由于x1和x2无op和from_tensors,停止并退出
y.backward()
assert np.array_equal(x1.grad, np.ones_like(x1_val))
assert np.array_equal(x2.grad, np.ones_like(x2_val))

add_with_const和其他运算符参见代码

利用现有的自动求导来训练一个线性回归模型,绝大部分代码来自于AutodiffEngine里面的lr_autodiff.py,其中gen_2d_data方法用于生成数据,每个样例有3维,其中第一维是bias,test_accuracy判断sigmoid(w*x)是否大于0.5来决定分类的类别,并与 y进行对比计算准确率。

我这里仅修改了auto_diff_lr方法,去掉了静态图里面的逻辑,并换成Tensor来封装。

下图为训练日志和训练结果