分类目录归档:自然语言生成

鼠年春节,用 GPT-2 自动生成(写)春联和对对联

鼠年春节临近,来试试新的基于 GPT2-Chinese 自动对联系统:自动写对联(输入开头进行对联自动生成)和自动对对联(输入上联自动写下联)。老的自动对联功能是去年基于深度学习机器翻译模型上线的一个自动对对联的对话模块:风云三尺剑,花鸟一床书---对联数据集和自动对联机器人

这一年来,以BERT为代表的预训练模型不断推陈出新,席卷整个自然语言处理(NLP)领域,这其中NLP的难题之一自然语言生成(NLG)也得到了很大的助力,特别是去年上半年 OpenAI 的 GPT-2 的推出,非常惊艳,不过 GPT-2 的模型主要是基于英文领域的语料训练的,虽然到目前为止已经发布了含有15亿参数的完整模型,对于英文领域的自动文本生成非常有帮助,但是对于中文领域的NLG来说还是很受限。

回到中文领域,我们之前推荐过AINLP技术交流群杜则尧同学的开源项目 GPT2-Chinese:GPT2-Chinese:《【Github】GPT2-Chinese:中文的GPT2训练代码》,这个项目可以针对中文数据进行GPT-2模型的训练,可以写诗,新闻,小说,或是训练通用语言模型。所以对于自动对联生成来说,我能想到的就是基于GPT2-Chinese和对联数据训练一份对联领域的GPT2模型,用于对联自动生成:写对联和对对联。幸运的是,对联数据已经有了,依然是我们去年使用过 couplet-dataset ,特别感谢提供这份数据的同学,这份对联数据包含70多万条对联,唯一可惜的是没有横批,要是有横批,就可以造更完整的自动写对联和对对联系统了。

特别需要说明的是,这里并不是基于一个大的中文 GPT-2 模型进行特定领域 finetune 的,虽然目前已经有了大型的中文 GPT-2 预训练模型:gpt2-ml ,但是和 GPT2-Chinese 是两个体系,而 GPT2-Chinese 目前还不支持这个大模型的迁移。关于如何使用 GPT2-Chinese 进行对联数据的 GPT2 模型训练,这个项目的代码和文档都写得非常清楚,直接参考即可,如果有问题,可以查看一下issue,我遇到的问题基本上就是通过文档和issue解决的,这里提几个注意的点:

1)训练数据可以按 GPT2-Chinese 训练数据的格式要求写个脚本进行转换,可以加一些标记符,譬如开头,结尾以及上联下联之间的分隔符,这样在生成的时候可以基于这些标记符做trick;
2)训练时请将参数 min-length 设置为一个较小的数字,默认为128,由于对联数据长度比较短,按默认的设置训练后只会得到乱码,我直接设置为1;
3)根据自己GPU显存的大小调整 batch_size 和配置参数, 这里 batch_size 默认为8,训练时在1080TI的机器上会出现OOM,将其设置为4就可以完全跑通了,其他参数不用动;

对联 GPT-2 模型训练完成后,可以直接基于 GPT2-Chinese 里面的 generate.py 脚本进行测试,很方便,我基于 generate.py 和 flask-restful 写了一个 server 版本,对接到AINLP公众号后台了,感兴趣的同学可以关注AINLP公众号,直接进行测试:

关键词“写对联”触发对联自动生成,例如输入“写对联鼠年”,对联模型会基于“鼠年”进行自动续写,会给出以“鼠年”开头大概3个对联:

关键词“对对联”触发基于上联对下联,例如输入“对对联 一帆风顺年年好”,会给出大概3个候选对联:

当然你可以用“上联”触发老的对联版本进行对比:

至于两个版本的效果,欢迎多做对比,如果遇到了很棒的机器对联,也欢迎在评论里分享。最后,欢迎关注AINLP公众号,测试自动生成对联和自动对对联功能:

关于AINLP对话功能模块,感兴趣的同学可以参考:

腾讯词向量和相似词、相似度、词语游戏系列
相似词查询:玩转腾讯 AI Lab 中文词向量
玩转腾讯词向量:词语相似度计算和在线查询
腾讯词向量实战:通过Annoy进行索引和快速查询
玩转腾讯词向量:Game of Words(词语的加减游戏)
词向量游戏:梅西-阿根廷+葡萄牙=?
腾讯 800 万中文词向量 API Demo 搭建

NLP相关工具及在线测试(公众号对话测试)
五款中文分词工具在线PK: Jieba, SnowNLP, PkuSeg, THULAC, HanLP
中文分词工具在线PK新增:FoolNLTK、LTP、StanfordCoreNLP
Python中文分词工具大合集:安装、使用和测试
八款中文词性标注工具使用及在线测试
百度深度学习中文词法分析工具LAC试用之旅
来,试试百度的深度学习情感分析工具
AINLP公众号新增SnowNLP情感分析模块

自动对联及作诗机
风云三尺剑,花鸟一床书---对联数据集和自动对联机器人
自动对联活动获奖结果以及机器对联赏析
"自动作诗机"上线,代码和数据都是公开的

夸夸聊天机器人及其他技能
一行Python代码实现夸夸聊天机器人
为了夸夸聊天机器人,爬了一份夸夸语料库
夸夸聊天机器人升级:从随机到准个性化
来,试试语音(识别)聊天(机器人)
来,试试成语接龙
推荐一份中文数据,来试试汉字、词语、成语、歇后语在线检索
AINLP公众号新增"狗屁不通文章生成器"接口
来,试试彩虹屁生成器

如果对AINLP公众号感兴趣,也欢迎参考我们的年度阅读清单:AINLP年度阅读收藏清单

AINLP公众号增加"狗屁不通文章生成器"

最近比较火的一个Github项目是:狗屁不通文章生成器(https://github.com/menzi11/BullshitGenerator),虽然和自然语言生成有点关系,但是代码其实和自然语言处理基本无关,或者说作者用了一点trick和规则,不过项目本身还是很有意思的:

BullshitGenerator

本项目为python3版本, 还有由suulnnka修改在线版, 使用更加方便: https://suulnnka.github.io/BullshitGenerator/index.html

下一步计划:

防止文章过于内容重复
加入更多啰嗦话.
加入马三立<开会迷>里的内容
加入手写体直接渲染出图片的功能(仅仅用于测试本人的打印机是否工作正常, 请勿做它用).
关于Pull requests:
鄙人每个requests都会仔细阅读, 但因近期事情较多, merge未必及时, 毕竟是业余项目, 请大家见谅. 如果未来实在更新不及时, 也欢迎有志之士替代本人继续本项目.

关于中文变量名:
平时撸码鄙人是不写中文变量名的, 本项目中的中文变量名只是最开始瞎写的时候边写语料边写代码时懒得切英文输入法了. 不过既然如此就保持吧!

关于生成算法
鄙人才疏学浅并不会任何自然语言处理相关算法. 而且目前比较偏爱简单有效的方式达到目的方式. 除非撞到了天花板, 否则暂时不会引入任何神经网络等算法. 不过欢迎任何人另开分支实现更复杂, 效果更好的算法. 不过除非效果拔群, 否则鄙人暂时不会融合.

这套代码不复杂,我把这套“狗屁不通文章生成器”对接到AINLP公众号后台了,做了一点修改,并且将生成字数限制在500字了,方便微信查看,感兴趣的同学可以关注AINLP,对话回复“狗屁不通文章:主题句”:

例如我输入“狗屁不通文章:自然语言处理”,生成了这样一段废话:

吉姆·罗恩在不经意间这样说过,要么你主宰生活,要么你被生活主宰。这句话把我们带到了一个新的维度去思考这个问题: 不难发现,在当今社会中,越来越多的人开始自然语言处理。自然语言处理,发生了会如何,不发生又会如何。我们都知道,只要有意义,那么就必须慎重考虑。了解清楚自然语言处理到底是一种怎么样的存在,是解决一切问题的关键。自然语言处理的发生,到底需要如何做到,不自然语言处理的发生,又会如何产生。德国曾经说过,只有在人群中间,才能认识自己。我希望诸位也能好好地体会这句话。 那么,总结地来说,这种事实对本人来说意义重大,相信对这个世界也是有一定意义的。我强烈建议自然语言处理,对我个人而言,自然语言处理不仅仅是一个重大的事件,还可能会改变我的人生。自然语言处理的发生,到底需要如何做到,不自然语言处理的发生,又会如何产生。我强烈建议自然语言处理,我们一般认为,抓住了问题的关键,其他一切就会迎刃而解。问题的关键究竟为何?这种事实对本人来说意义重大,相信对这个世界也是有一定意义的。要想清楚,自然语言处理,到底是一种怎么样的存在。马克思曾经说过,一切节省,归根到底都归结为时间的节省。这句话语虽然很短,但令我浮想联翩。 屠格涅夫曾经提到过,凡事只要看得淡些,就没有什么可忧虑的了;只要不因愤怒而夸大事态,就没有什么事情值得生气的了。我希望诸位也能好好地体会这句话。

微信公众号对话是这样的:

注:原创文章,转载请注明出处及保留链接“我爱自然语言处理”:http://www.52nlp.cn

本文链接地址:AINLP公众号增加"狗屁不通文章生成器" http://www.52nlp.cn/?p=12405

AINLP公众号"自动作诗机"上线

最近对自然语言生成或者文本自动生成技术比较感兴趣,做了一些调研,作为自然语言处理领域的难题之一,个人一直觉得自然语言生成(NLG)是最难的,虽然这一两年动辄会看机器模仿莎士比亚写剧本,模仿金庸写小说,这些不过是媒体用来吸引眼球的,总之这些字凑到一起看起来像模像样,但是读了之后不知所云。不过对于特定格式的文本,类似诗歌这种,如果不细究,从直观的角度来看确实还有点像那么回事,例如清华大学自然语言处理与社会人文计算实验室开发的九歌计算机诗词创作系统,还是很强大的:

所以我首先将目光瞄准了诗歌自动生成相关的资料上,在google了一圈后,锁定了ioiogoo同学的这篇文章和两个开源版本实现:

1)介绍文章:用Keras实现RNN+LSTM的模型自动编写古诗
2)ioiogoo同学原始版本代码:https://github.com/ioiogoo/poetry_generator_Keras
3)youyuge34同学的更新版本:https://github.com/youyuge34/Poems_generator_Keras

特别是最后这个版本,作者直接提供了训练好的模型数据:poetry_model.h5,如果不想训练,直接下载这个模型把玩即可。我尝试了一下训练流程,训练几百步的时候会报错,具体原因还没有细究。不过在继续训练自己的模型之前,可以基于作者提供的模型将这个自动作诗模块包装到AINLP公众号对话接口中去,所以花了一点时间,在AINLP公众号上上线了这个自动作诗机模块,算是玩具级别的自动作诗机吧,目前支持两个功能:藏头诗(提供四个字)和首字诗(提供一个字):

请注意这两个功能目前只提供'五言绝句'的生成,因为上述代码在训练模型的时候已经过滤了其他诗词,另外这套代码也用了一些trick,生成的结果也是随机的,每次都不一样。最后,感兴趣的同学欢迎关注AINLP公众号,直接在公众号对话里测试即可:

关于文本自动生成或者自然语言生成,如果有好的idea或者素材或者想法,欢迎留言讨论,这里也会继续关注这个话题。

注:原创文章,转载请注明出处及保留链接“我爱自然语言处理”:http://www.52nlp.cn

本文链接地址:AINLP公众号"自动作诗机"上线 http://www.52nlp.cn/?p=11995