标签归档:斯坦福中文分词

八款中文词性标注工具使用及在线测试

结束了中文分词工具的安装、使用及在线测试,开启中文词性标注在线测试之旅,一般来说,中文分词工具大多数都附带词性标注功能的,这里测试了之前在AINLP公众号上线的8款中文分词模块或者工具,发现它们都是支持中文词性标注的,这里面唯一的区别,就是各自用的词性标注集可能有不同:

以下逐一介绍这八个工具的中文词性标注功能的使用方法,至于安装,这里简要介绍,或者可以参考之前这篇文章:Python中文分词工具大合集:安装、使用和测试,以下是在Ubuntu16.04 & Python3.x的环境下安装及测试。
继续阅读

Python中文分词工具大合集:安装、使用和测试

这篇文章事实上整合了前面两篇文章的相关介绍,同时添加一些其他的Python中文分词相关资源,甚至非Python的中文分词工具,仅供参考。

首先介绍之前测试过的8款中文分词工具,这几款工具可以直接在AINLP公众号后台在线测试,严格的说,它们不完全是纯粹的中文分词工具,例如SnowNLP, Thulac, HanLP,LTP,CoreNLP都是很全面的(中文)自然语言处理工具。安装这些模块其实很简单,只要按官方文档的方法安装即可,以下做个简单介绍,在Python3.x的环境下测试,Ubuntu16.04 或 MacOS 测试成功。

再附加介绍12款其他的中文分词工具或者中文分词模块,最后的两款fnlp和ansj是比较棒的java中文分词工具,貌似还没有python接口,记录一下。这些中文分词工具我没有测试,感兴趣的同学可以动手试试。
继续阅读

中文分词工具在线PK新增:FoolNLTK、HITLTP、StanfordCoreNLP

继续中文分词在线PK之旅,上文《五款中文分词工具在线PK: Jieba, SnowNLP, PkuSeg, THULAC, HanLP》我们选择了5个中文分词开源工具,这次再追加3个,分别是FoolNLTK、哈工大LTP(pyltp, ltp的python封装)、斯坦福大学的CoreNLP(stanfordcorenlp is a Python wrapper for Stanford CoreNLP),现在可以在AINLP公众号测试一下:中文分词 我爱自然语言处理

以下是在Python3.x & Ubuntu16.04 的环境下测试及安装这些中文分词器:
继续阅读

Python自然语言处理工具NLTK学习导引及相关资料

NLTK 大概是最知名的Python自然语言处理工具了,全称"Natural Language Toolkit", 诞生于宾夕法尼亚大学,以研究和教学为目的而生,因此也特别适合入门学习。NLTK虽然主要面向英文,但是它的很多NLP模型或者模块是语言无关的,因此如果某种语言有了初步的Tokenization或者分词,NLTK的很多工具包是可以复用的。

关于NLTK,网上已经有了很多介绍资料,当然首推的NLTK学习资料依然是官方出的在线书籍 NLTK Book:Natural Language Processing with Python – Analyzing Text with the Natural Language Toolkit ,目前基于Python 3 和 NLTK 3 ,可以在线免费阅读和学习。早期的时候还有一个基于Python 2 的老版本:http://www.nltk.org/book_1ed/ ,被 O'Reilly 正式出版过,2012年的时候,国内的陈涛同学无偿翻译过一个中文版,我还在这里推荐过:推荐《用Python进行自然语言处理》中文翻译-NLTK配套书 ,后来才有了基于此版本的更正式的中文翻译版:《Python自然语言处理》。不过如果英文ok的话,优先推荐看目前官方的最新版本:http://www.nltk.org/book/

几年前我尝试写英文博客,觉得可以从NLTK的入门介绍开始,所以写了一个英文系列:Dive into NLTK,基于Python 2,感兴趣的同学可以关注:

Part I: Getting Started with NLTK
Part II: Sentence Tokenize and Word Tokenize
Part III: Part-Of-Speech Tagging and POS Tagger
Part IV: Stemming and Lemmatization
Part V: Using Stanford Text Analysis Tools in Python
Part VI: Add Stanford Word Segmenter Interface for Python NLTK
Part VII: A Preliminary Study on Text Classification
Part VIII: Using External Maximum Entropy Modeling Libraries for Text Classification
Part IX: From Text Classification to Sentiment Analysis
Part X: Play With Word2Vec Models based on NLTK Corpus
Part XI: From Word2Vec to WordNet

这个过程中使用了NLTK中嵌入的斯坦福大学文本分析工具包,发现少了斯坦福中文分词器,所以当时动手加了一个:Python自然语言处理实践: 在NLTK中使用斯坦福中文分词器

斯坦福大学自然语言处理组是世界知名的NLP研究小组,他们提供了一系列开源的Java文本分析工具,包括分词器(Word Segmenter),词性标注工具(Part-Of-Speech Tagger),命名实体识别工具(Named Entity Recognizer),句法分析器(Parser)等,可喜的事,他们还为这些工具训练了相应的中文模型,支持中文文本处理。在使用NLTK的过程中,发现当前版本的NLTK已经提供了相应的斯坦福文本处理工具接口,包括词性标注,命名实体识别和句法分析器的接口,不过可惜的是,没有提供分词器的接口。在google无果和阅读了相应的代码后,我决定照猫画虎为NLTK写一个斯坦福中文分词器接口,这样可以方便的在Python中调用斯坦福文本处理工具。

后来,这个版本在 NLTK 3.2 官方版本中被正式引入:stanford_segmenter.py ,我也可以小自豪一下为NLTK做过一点微小的贡献:

使用NLTK来处理中文是很多同学想干的事情,这方面,在NLTK中调用斯坦福大学的中文工具包刚好是一个切入点,关于NLTK中如何使用斯坦福大学工具包进行中文信息处理,推荐两篇文章:

在 NLTK 中使用 Stanford NLP 工具包http://www.zmonster.me/2016/06/08/use-stanford-nlp-package-in-nltk.html

以及白宁超同学的系列文章:

干货!详述Python NLTK下如何使用stanford NLP工具包http://www.cnblogs.com/baiboy/p/nltk1.html

关于NLTK的书籍,其实还有一本很不错:Python Text Processing with NLTK 2.0 Cookbook ,我之前看过这本,不过现在已经更新到Python 3了:Python 3 Text Processing with NLTK 3 Cookbook 。最后提供一个NLTK相关资料的打包下载,包括早期的中文翻译版和这个Cookbook,仅供个人学习使用,感兴趣的同学可以关注我们的公众号: AINLP, 回复'NLTK'获取相关下载链接:

注:原创文章,转载请注明出处及保留链接“我爱自然语言处理”:http://www.52nlp.cn

本文链接地址:Python自然语言处理工具NLTK学习导引及相关资料 http://www.52nlp.cn/?p=11190

Python自然语言处理实践: 在NLTK中使用斯坦福中文分词器

斯坦福大学自然语言处理组是世界知名的NLP研究小组,他们提供了一系列开源的Java文本分析工具,包括分词器(Word Segmenter),词性标注工具(Part-Of-Speech Tagger),命名实体识别工具(Named Entity Recognizer),句法分析器(Parser)等,可喜的事,他们还为这些工具训练了相应的中文模型,支持中文文本处理。在使用NLTK的过程中,发现当前版本的NLTK已经提供了相应的斯坦福文本处理工具接口,包括词性标注,命名实体识别和句法分析器的接口,不过可惜的是,没有提供分词器的接口。在google无果和阅读了相应的代码后,我决定照猫画虎为NLTK写一个斯坦福中文分词器接口,这样可以方便的在Python中调用斯坦福文本处理工具。

首先需要做一些准备工作,第一步当然是安装NLTK,这个可以参考我们在gensim的相关文章中的介绍《如何计算两个文档的相似度》,不过这里建议check github上最新的NLTK源代码并用“python setup.py install”的方式安装这个版本:https://github.com/nltk/nltk。这个版本新增了对于斯坦福句法分析器的接口,一些老的版本并没有,这个之后我们也许还会用来介绍。而我们也是在这个版本中添加的斯坦福分词器接口,其他版本也许会存在一些小问题。其次是安装Java运行环境,以Ubuntu 12.04为例,安装Java运行环境仅需要两步:

sudo apt-get install default-jre
sudo apt-get install default-jdk

最后,当然是最重要的,你需要下载斯坦福分词器的相应文件,包括源代码,模型文件,词典文件等。注意斯坦福分词器并不仅仅支持中文分词,还支持阿拉伯语的分词,需要下载的zip打包文件是这个: Download Stanford Word Segmenter version 2014-08-27,下载后解压。

准备工作就绪后,我们首先考虑的是在nltk源代码里的什么地方来添加这个接口文件。在nltk源代码包下,斯坦福词性标注器和命名实体识别工具的接口文件是这个:nltk/tag/stanford.py ,而句法分析器的接口文件是这个:nltk/parse/stanford.py , 虽然在nltk/tokenize/目录下有一个stanford.py文件,但是仅仅提供了一个针对英文的tokenizer工具PTBTokenizer的接口,没有针对斯坦福分词器的接口,于是我决定在nltk/tokenize下添加一个stanford_segmenter.py文件,作为nltk斯坦福中文分词器的接口文件。NLTK中的这些接口利用了Linux 下的管道(PIPE)机制和subprocess模块,这里直接贴源代码了,感兴趣的同学可以自行阅读:
继续阅读