标签归档:最大似然估计

PRML读书会第四章 Linear Models for Classification

PRML读书会第四章 Linear Models for Classification

主讲人 planktonli

planktonli(1027753147) 19:52:28

现在我们就开始讲第四章,第四章的内容是关于 线性分类模型,主要内容有四点:
1) Fisher准则的分类,以及它和最小二乘分类的关系 (Fisher分类是最小二乘分类的特例)
2) 概率生成模型的分类模型
3) 概率判别模型的分类模型
4) 全贝叶斯概率的Laplace近似
需要注意的是,有三种形式的贝叶斯:
1) 全贝叶斯
2) 经验贝叶斯
3) MAP贝叶斯
我们大家熟知的是 MAP贝叶斯
MAP(poor man’s Bayesian):不涉及marginalization,仅是一种按后验概率最大化的point estimate。这里的MAP(poor man’s Bayesian)是属于 点概率估计的。而全贝叶斯可以看作对test样本的所有参数集合的加权平均,PRML说的Bayesian主要还是指Empirical Bayesian: 继续阅读

PRML读书会第三章 Linear Models for Regression

PRML读书会第三章 Linear Models for Regression

主讲人 planktonli

planktonli(1027753147) 18:58:12
大家好,我负责给大家讲讲 PRML的第3讲 linear regression的内容,请大家多多指教,群主让我们每个主讲人介绍下自己,赫赫,我也说两句,我是 applied mathematics + computer science的,有问题大家可以直接指出,互相学习。大家有兴趣的话可以看看我的博客: http://t.qq.com/keepuphero/mine,当然我给大家推荐一个好朋友的,他对计算机发展还是很有心得的,他的网页http://www.zhizhihu.com/ 对machine learning的东西有深刻的了解。

好,下面言归正传,开讲第3章,第3章的名字是 linear regression,首先需要考虑的是: 为什么在讲完 introduction、probability distributions 之后就直讲 linear regression? machine learning的essence是什么?

机器学习的本质问题: 我个人理解,就是通过数据集学习未知的最佳逼近函数,学习的 收敛性\界 等等都是描述这个学习到的function到底它的性能如何。但是,从数学角度出发,函数是多样的,线性\非线性\跳跃\连续\非光滑,你可以组合出无数的函数,那么这些函数就组成了函数空间,在这些函数中寻找到一个满足你要求的最佳逼近函数,无疑大海捞针。我们再来回顾下第一章的 曲线拟和问题:

prml3-1

需要逼近的函数是: prml3-2,M阶的曲线函数可以逼近么?这是我们值得思考的问题。 继续阅读