标签归档:本地部署

通过Docker部署深度学习项目环境

深度学习环境部署的方法有很多种,其中Docker化深度学习环境和项目是一个很不错的选择。这里写过一些深度学习主机安装和部署的文章,这篇文章记录一下相关的通过Docker来部署和测试深度学习项目的一些经验,以下是在一台4卡1080TI,Ubutu16.04的机器上的记录。

一、安装Docker:

关于Docker的相关介绍资料比较多,这里就不多说了,感兴趣的同学可以自行Google或者看一下参考资料。

1)使用APT安装:

$ sudo apt-get update

$ sudo apt-get install \
        apt-transport-https \
        ca-certificates \
        curl \
            software-properties-common

2) 使用国内源:

curl -fsSL https://mirrors.ustc.edu.cn/docker-ce/linux/ubuntu/gpg | sudo apt-key add -
# 官方源
# $ curl -fsSL https://download.docker.com/linux/ubuntu/gpg | sudo apt-key add -

3) 向source_list添加Docker源:

$ sudo add-apt-repository \
            "deb [arch=amd64] https://mirrors.ustc.edu.cn/docker-ce/linux/ubuntu
            \
                $(lsb_release -cs) \
                stable"

# 官方源
# $ sudo add-apt-repository \
#    "deb [arch=amd64] https://download.docker.com/linux/ubuntu \
#    $(lsb_release -cs) \
#    stable"

4)更新 apt 软件包缓存,并安装 docker-ce:

$ sudo apt-get update
$ sudo apt-get install docker-ce

5) 添加用户组(安装后貌似这个组已经存在了):

sudo groupadd docker

6) 将当期用户添加到这个组里并退出重新登录:

sudo usermod -aG docker $USER

7) 测试Docker:

docker run hello-world

8) 添加过内镜像代理:

sudo vim /etc/docker/daemon.json
{
    "registry-mirrors": [
        "https://registry.docker-cn.com"
    ]
}

9)重启Docker服务

sudo systemctl daemon-reload
sudo systemctl restart docker

二、安装nvidia-docker:

单独安装Docker之后还无法使用带GPU的深度学习机器,需要再安装一下英伟达出品的Nvidia-docker。

1)安装:

# Add the package repositories
$ distribution=$(. /etc/os-release;echo $ID$VERSION_ID)
$ curl -s -L https://nvidia.github.io/nvidia-docker/gpgkey | sudo apt-key add -
$ curl -s -L https://nvidia.github.io/nvidia-docker/$distribution/nvidia-docker.list | sudo tee /etc/apt/sources.list.d/nvidia-docker.list

$ sudo apt-get update && sudo apt-get install -y nvidia-container-toolkit
$ sudo systemctl restart docker

继续阅读