标签归档:概率生成模型

PRML读书会第四章 Linear Models for Classification

Deep Learning Specialization on Coursera

PRML读书会第四章 Linear Models for Classification

主讲人 planktonli

planktonli(1027753147) 19:52:28

现在我们就开始讲第四章,第四章的内容是关于 线性分类模型,主要内容有四点:
1) Fisher准则的分类,以及它和最小二乘分类的关系 (Fisher分类是最小二乘分类的特例)
2) 概率生成模型的分类模型
3) 概率判别模型的分类模型
4) 全贝叶斯概率的Laplace近似
需要注意的是,有三种形式的贝叶斯:
1) 全贝叶斯
2) 经验贝叶斯
3) MAP贝叶斯
我们大家熟知的是 MAP贝叶斯
MAP(poor man’s Bayesian):不涉及marginalization,仅是一种按后验概率最大化的point estimate。这里的MAP(poor man’s Bayesian)是属于 点概率估计的。而全贝叶斯可以看作对test样本的所有参数集合的加权平均,PRML说的Bayesian主要还是指Empirical Bayesian: 继续阅读