标签归档:深度学习笔记

一键收藏自然语言处理学习资源大礼包

虽然知道大多数同学都有资料收藏癖,还是给大家准备一份自然语言处理学习大礼包,其实是之前陆陆续续分享的NLP学习资源,包括自然语言处理、深度学习、机器学习、数学相关的经典课程、书籍和学习笔记,这些资料基本上都是公开渠道可以获得的,整理到一起,方便NLP爱好者收藏把玩。当然,学习的前提依然是”学自然语言处理,其实更应该学好英语“

获取方法很简单,关注AINLP公众号,后台回复关键词:ALL4NLP,一键打包收藏NLP学习资源:

这些自然语言处理相关资源列表如下,欢迎收藏:

相关的资源的过往文章大致介绍如下,不限于下述文章:

斯坦福大学自然语言处理经典入门课程-Dan Jurafsky 和 Chris Manning 教授授课

哥伦比亚大学经典自然语言处理公开课,数学之美中盛赞的柯林斯(Michael Collins)教授授课

认真推荐一份深度学习笔记:简约而不简单

Andrew Ng 老师新推的通俗人工智能课程以及其他相关资料

那些值得推荐和收藏的线性代数学习资源

Philipp Koehn大神的神经网络机器翻译学习资料:NMT Book

凸优化及无约束最优化相关资料

斯坦福大学深度学习自然语言处理课程CS224N 2019 全20个视频分享

自然语言处理经典书籍《Speech and Language Processing》第三版最新版下载(含第二版)

强化学习圣经:《强化学习导论》第二版(附PDF下载)

新书下载 | 面向机器学习的数学(Mathematics for Machine Learning)

Springer面向公众开放正版电子书籍,附65本数学、编程、数据挖掘、数据科学、数据分析、机器学习、深度学习、人工智能相关书籍链接及打包下载

最后,欢迎关注AINLP,回复"all4nlp"获取:

认真推荐一份深度学习笔记:简约而不简单

认真推荐一份深度学习笔记:dl-notes ,作者是我的师兄朱鉴,很多年前,他也给过我一份《无约束最优化》的笔记,在这里发布过。这份文件虽然被他命名为:一份简短的深度学习笔记,但是我读完后的第一反应是:简约而不简单。师兄在工作上一直是我的偶像,他在腾讯深耕自然语言处理相关方向6年,之后又一直在小米打拼,作为技术专家,现在主要负责对话系统相关的工作。他在工作上兢兢业业,但是工作之余也一直在学习,前两天他把这份笔记给我,说这是工作之余学习的一个总结,希望分享给大家。这份深度学习笔记共有150多页,从基础的微积分、线性代数、概率论讲起,再到数值计算、神经网络、计算图、反向传播、激活函数、参数优化、损失函数、正则化等概念,最后落笔于网络架构,包含前向网络、卷积网络、递归网络以及Transformer和Bert等,涵盖的内容非常系统全面。强烈推荐给大家,个人觉得这是一份极好的深度学习中文材料,可用于深度学习入门或者平时工作参考,当然也可以基于这份笔记的任何一个章节做深度扩展阅读和学习。

以下是这份笔记的完整目录:


继续阅读