标签归档:聊天机器人

Rasa入坑指南一:初识Rasa

最近对 Rasa 产生了浓厚的兴趣,准备用Rasa打磨一下聊天机器人,所以做了一些调研和学习,准备记录一下,这是第一篇,感兴趣的同学可以参考。

Rasa是一套开源机器学习框架,用于构建基于上下文的AI小助手和聊天机器人。Rasa有两个主要模块:Rasa NLU 用于对用户消息内容的语义理解;Rasa Core 用于对话管理(Dialogue management)。Rasa官方还提供了一套交互工具 RasaX 帮助用户提升和部署由Rasa框架构建的AI小助手和聊天机器人。

学习一套东西最好的方法是从官方文档开始,Rasa官方文档相当贴心,我们从 Rasa User Guide 走起。

一、安装Rasa及RasaX

我是在Ubuntu16.04, Python3 的 virtualenv 环境下测试安装的:

virtualenv -p python3 venv
source venv/bin/activate
pip install rasa-x --extra-index-url https://pypi.rasa.com/simple

如果一切正常,rasa 及 rasa x 将同时被安装,如果你不希望使用 RasaX,那么安装时直接"pip install rasa"即可,当然还可以继续安装 Rasa NLU 文本分析时所需的一些依赖,此处暂时忽略。

二、运行官方示例

Rasa 官方 tutorial 示例相当贴心,即使你没有安装rasa,也可以在这个页面通过浏览器运行示例代码,如果已经安装了,可以在自己的电脑上通过命令行follow整个流程。

1. 创建默认的初始项目

在终端运行:

rasa init --no-prompt

这个过程将有一个很快速的 Rasa 相关模型训练过程展示,最终提示:

...
NLU model training completed.
Your Rasa model is trained and saved at '/home/textminer/rasa/default/models/20190821-205211.tar.gz'.
If you want to speak to the assistant, run 'rasa shell' at any time inside the project directory.

如果不加 --no-prompt,会有几个问题提示。你也可以直接通过浏览器在官方页面执行“run”按钮,结果是这样的:

这个命令将在当前目录下新建以下文件:

__init__.py 空文件
actions.py 可以自定义 actions 的代码文件
config.yml ‘*’ Rasa NLU 和 Rasa Core 的配置文件
credentials.yml 定义和其他服务连接的一些细节,例如rasa api接口
data/nlu.md ‘*’ Rasa NLU 的训练数据
data/stories.md ‘*’ Rasa stories 数据
domain.yml ‘*’ Rasa domain 文件
endpoints.yml 和外部消息服务对接的 endpoins 细则,例如 fb messenger
models/<timestamp>.tar.gz 初始训练的模型数据

其中标志有 ‘*’ 的文件是比较重要的文件,以下我们来详细的了解。
继续阅读

AINLP公众号对话接口新增成语接龙

成语接龙很有意思,原本计划找一些成语语料自己做一个,不过Google一圈后发现Github上有一个现成的项目:IdiomsSolitaire

Github链接:https://github.com/WangYihang/IdiomsSolitaire

这个项目自带2万多条成语数据,用法也很简单:

API Usage

>>> import IdiomsSolitaire
>>> IdiomsSolitaire.init()
>>> print IdiomsSolitaire.guess("一心一意")

Script Usage

# Install it first
pip install -r requirements.txt
# Use it in your termianl
$ python IdiomsSolitaire.py
Usage : 
        python IdiomsSolitaire.py [Idioms]
Example : 
        python IdiomsSolitaire.py '一心一意'
Author : 
        WangYihang <wangyihanger@gmail.com>
$ python IdiomsSolitaire.py '一心一意'
[+] Init finished! [23594] words.
[一语破的] : [一句话就击中要害。的,箭靶的中心,比喻要害之处。]
$ python IdiomsSolitaire.py '一心一意'
[+] Init finished! [23594] words.
[一至於此] : [竟到如此地步。]

所以很快把这个接口接入了AINLP的对话功能中,感兴趣的同学可以关注AINLP公众号直接测试:

也可以直接尝试语音输入,不过个别地方识别确实有点歪打正着:

最后,欢迎关注我们的公众号AINLP,可以对对联,自动作诗,查询相似词,玩词语加减游戏等:

注:原创文章,转载请注明出处及保留链接“我爱自然语言处理”:http://www.52nlp.cn

本文链接地址:AINLP公众号对话接口新增成语接龙 http://www.52nlp.cn/?p=12067

八款中文词性标注工具使用及在线测试

结束了中文分词工具的安装、使用及在线测试,开启中文词性标注在线测试之旅,一般来说,中文分词工具大多数都附带词性标注功能的,这里测试了之前在AINLP公众号上线的8款中文分词模块或者工具,发现它们都是支持中文词性标注的,这里面唯一的区别,就是各自用的词性标注集可能有不同:

以下逐一介绍这八个工具的中文词性标注功能的使用方法,至于安装,这里简要介绍,或者可以参考之前这篇文章:Python中文分词工具大合集:安装、使用和测试,以下是在Ubuntu16.04 & Python3.x的环境下安装及测试。
继续阅读

来,试试语音(识别)聊天(机器人)

周末娱乐一下,解锁AINLP公众号聊天机器人无名的语音(识别)聊天技能,不过只有语音识别,没有语音合成,这个目前基于微信公众号本身提供的语音识别接口,目前只能识别中文语音,感兴趣的同学可以先关注AINLP公众号,然后后台语音或者文字对话即可:

基于AINLP公众号的聊天机器人功能点,可以基于语音玩一些有趣的事情,例如中英翻译功能:

通过AINLP公众号的中文语音识别功能可以瞬间把手机变成一个中到英语音翻译助手,例如:

这里中括号里显示的是中文语音识别结果,供大家参考(调试)。
继续阅读

夸夸聊天机器人升级:从随机到准个性化

来,你们要的夸夸聊天机器人升级了,针对问题内容进行“准个性化”回答,目前可以凑合用,但是聊胜于无,欢迎来撩,使用方法,关注公众号AINLP,后台对话即可:

自从《一行Python代码实现夸夸聊天机器人》发布后,有不少同学期待着夸夸聊天机器人的升级。但是巧妇难为无米之炊,所以我准备了夸夸语料库:《为了夸夸聊天机器人,爬了一份夸夸语料库》。有了夸夸问答语料之后,针对聊天机器人或者智能问答就有很多方法可以操作,最直接的一个想法就是计算问题与夸夸语料库中的标题(以及内容)的语义相似度,然后取最匹配问题的答案作为结果返回。

我大概就是是这样操作的,首先对语料库进行了简单的清洗和重组,清洗掉没有答案的,以及作者自己回答的答案,然后将每个问题的答案组合为list作为随机答案。不过更直接一些,只计算问题和标题的相似度,按一定的阈值进行过滤,所以这个版本,还存在很多问题,大家先凑合着用,后续还有升级计划。

这方面比较关键的一个问题就是相似问题匹配或者句子语义相似度计算。关于文本相似度,词语或者短语级别的语义相似度在词向量范畴下解决的很漂亮,感兴趣的同学可以体验:《相似词查询:玩转腾讯 AI Lab 中文词向量》,但是到了句子级别或者文档级别,目前貌似还没有很漂亮的解决方案,或者我调研的不够,有线索的同学欢迎留言探讨。

最后关于如何使用这个夸夸聊天机器人,首先关注我们的公众号AINLP,然后后台和聊天机器人对话即可,不过需要一些关键字触发夸夸模式,譬如“。。。求夸。。”, “。。。求赞。。”, “。。。,求鼓励”, “。。。, 求表扬”, 或者 “。。夸我。。。。”, “。。。鼓励我。。。”等等,否则进入闲聊模式。关于聊天机器人,目前希望大家不要抱太高的期望,把它当傻子即可:

聊天过程中如果问题没有匹配上或者过于简单,会回退到随机模式:

当然,这里选的case一定是准备过的,还有一些bad case没有给你们看,欢迎测试,欢迎建议,特别是如何匹配问题域的建议,非常欢迎。
继续阅读

为了夸夸聊天机器人,爬了一份夸夸语料库

上周为了娱乐,写了一篇《一行Python代码实现夸夸聊天机器人》,虽然只有几十条人工整理的通用夸夸语料,但是貌似也能应付一些简单需求。不过这篇文章在微博、AINLP微信公众号、知乎专栏推送后,还是有很多同学强烈建议丰富语料库。这个建议其实是很不错的,所以周末认真调研了一番,决定从豆瓣上的夸夸小组入手,这里面有很多现成的语料,至于混进微信、QQ夸夸群,收集语料,我觉得不太现实。

豆瓣上有很多夸夸小组,貌似最大的莫过于“相互表扬小组”,最近因为这股夸夸风,据说这个小组已经开始限制加入新人了,我针对这个小组写了一个小爬虫,爬了一份夸夸语料,总计2万6千多个帖子,采集了标题、内容和回复的相关信息,保存为json格式,1个帖子1条,大概是这样的:

{"title": "因为没有男朋友,求夸", "url": "https://www.douban.com/group/topic/135844056/", "author": "71277500", "last_reply_time": "03-17 16:40", "content": "笨人原本一个人好好的,都单了两三年了,一直觉得挺开心的。最近不知道抽了什么风,突然特别想找个男朋友。但是但是,偏偏找不到靠谱的男朋友!现在一个人睡不着,没想明白这事,求夸。\n", "replies_num": "14", "replies": [{"content": "你这么可爱肯定会有一个很好很好的人在等你!", "post_id": "135844056", "comment_id": "1834208628", "user_id": "189783421", "pub_time": "2019-03-16 01:08:38"}, {"content": "最好的肯定要晚点出现哦", "post_id": "135844056", "comment_id": "1834208775", "user_id": "189783421", "pub_time": "2019-03-16 01:08:52"}, {"content": "“笨人”,刚看到开头就笑了", "post_id": "135844056", "comment_id": "1834282396", "user_id": "192799520", "pub_time": "2019-03-16 07:50:50"}, {"content": "一个好可耐的宝宝", "post_id": "135844056", "comment_id": "1834282931", "user_id": "192799520", "pub_time": "2019-03-16 07:52:24"}, {"content": "也许明天就出现了", "post_id": "135844056", "comment_id": "1834290527", "user_id": "185989534", "pub_time": "2019-03-16 08:11:38"}, {"content": "你知道有一个适合你的那个在等你吧", "post_id": "135844056", "comment_id": "1834308924", "user_id": "192597621", "pub_time": "2019-03-16 08:46:23"}, {"content": "如果没有男朋友,肯定是你太优秀", "post_id": "135844056", "comment_id": "1834313229", "user_id": "171520899", "pub_time": "2019-03-16 08:53:19"}, {"content": "没有男朋友多好,省钱", "post_id": "135844056", "comment_id": "1834320533", "user_id": "130379006", "pub_time": "2019-03-16 09:03:42"}, {"content": "哈哈,谢谢好可爱的你呀!", "post_id": "135844056", "comment_id": "1835717925", "user_id": "71277500", "pub_time": "2019-03-17 16:16:58"}, {"content": "有道理", "post_id": "135844056", "comment_id": "1835718260", "user_id": "71277500", "pub_time": "2019-03-17 16:17:22"}, {"content": "也许吧,哈哈哈", "post_id": "135844056", "comment_id": "1835718395", "user_id": "71277500", "pub_time": "2019-03-17 16:17:32"}, {"content": "原本想写本人,一不小心错别字,看样子还是很符合的", "post_id": "135844056", "comment_id": "1835719069", "user_id": "71277500", "pub_time": "2019-03-17 16:18:17"}, {"content": "没有,只是单纯地觉得很可爱,很符合你写一段话的文风😄ཽ……退一步讲,古人讲究谦辞,称呼自己要自谦,本人要说鄙人,你用“笨人”活泼可爱,也能称得上是一种自谦,还是你自创的,有趣", "post_id": "135844056", "comment_id": "1835734308", "user_id": "192799520", "pub_time": "2019-03-17 16:35:21"}, {"content": "哈哈,有道理,我懂了", "post_id": "135844056", "comment_id": "1835738373", "user_id": "71277500", "pub_time": "2019-03-17 16:40:00"}]}

写到这里,估计还是会有同学准备留言索要数据了,因为即使上次区区几十条语料,随便google一下就可以得到的“夸夸语料”都有同学留言索取,所以这里准备多说几句,关于夸夸聊天机器人,关于夸夸语料库。

上个周,在看到清华刘知远老师的评论后,我是用娱乐的心态写了上周的那篇文章:《一行Python代码实现夸夸聊天机器人》,没想到,反响还不错,甚至有一些同学提了很好的建议。所以当周末认真思考这件事的可行性时,突然觉得,夸夸聊天机器人是一个绝好的机器学习实践项目:仅从一个idea出发,怎样做一个不错的夸夸聊天机器人?

作为自然语言处理四大难题之一的自动问答,个人觉得目前还远远不够“智能”,虽然市面上有很多聊天机器人,但是观察来看,以娱乐的心态来对话是可以的,或者完成一些简单的任务是没有问题的,例如询问天气,但是如果抱着很高的期望,很多轮对话下来,基本可以认为这个聊天机器人“不靠谱”, “答非所问”,甚至是个“智障”。虽然通用领域的智能问答或者聊天机器人还有很长的路要走,但是如果把这个问题限定在垂直领域或者很小的需求范围,那么问题可能就有解了,例如夸夸聊天机器人,需求就很简单:做啥都夸。简单的就是随便夸,复杂一点或者个性化的就是夸某个点、某件事、某个人,前者吗,就是上次《一行Python代码实现夸夸聊天机器人》做得事情,准备一些通用夸奖的语料,然后随机夸;后者,需要准备一些夸夸规则和夸夸语料库。

开个玩笑,二十一世纪什么最贵?当然是数据了,确切的说,是面向特定任务的特定数据。现在不缺机器学习框架,不缺算法,不缺机器,甚至不缺“人”,缺什么,就缺数据。这段时间,因为夸夸群的兴起,很多人看到了商机,说不定哪一天你的老板把你找来,直接给扔给你一个任务:做一个夸夸聊天机器人?怎么办,当然要调研啦。花了大半天时间,你了解了聊天机器人的前世今生,发现了人工智能标记语言AIML,知道了Chatbot的种种玩法,基于规则的、基于机器学习模型的、基于知识图谱的等等等等,甚至还有很多智能问答开源框架可以直接套用,最后,当你兴高采烈的准备动手实践的时候,你突然发现,还没有数据,你需要数据,需要夸夸语料库。
继续阅读

一行Python代码实现夸夸聊天机器人

来,做个标题党,娱乐一下。

前两天通过国内NLP才俊清华刘知远老师的朋友圈了解到有个清华夸夸群:

然后今天在知乎又看到他在这个帖子下的评论:如何评价清华夸夸群

实测疗效颇佳!都有种冲动要开发个夸夸聊天机器人,个性化夸人,终生陪伴左右。

我想这个功能AINLP双语聊天机器人无名可以有啊,虽然还做不到高级的个性化,但是最简单的起码是可以做到的,所以说干就干,用一行Python代码实现了这个功能:

print(random.choice(zan_list))

来,看看效果,其中 zan_list 是我随手整理得“中文夸夸语料库”:

In [1]: import random
 
In [2]: from util import zan_list
 
In [3]: print(random.choice(zan_list))
您目光深邃,一看您就是一位有思想的人。
 
In [4]: print(random.choice(zan_list))
从您的言谈中可以看出,我今天遇到的是很有修养的人。
 
In [5]: print(random.choice(zan_list))
别开玩笑了,看您的容貌,肯定不到二十岁。
 
In [6]: print(random.choice(zan_list))
这么魁梧的身材,潇洒的外表,不是大老板才怪了呢!
 
In [7]: print(random.choice(zan_list))
您一看就是大富大贵的人
 
In [8]: print(random.choice(zan_list))
我真佩服您的头脑,多少别人办不成的事,您一到便迎刃而解。
 
In [9]: print(random.choice(zan_list))
您的语调独特,言谈话语中充满了感染力。
 
In [10]: print(random.choice(zan_list))
听君一席话,胜读十年书,今天与您交谈,我受益匪浅。
 
In [11]: print(random.choice(zan_list))
您一看就是大富大贵的人
 
In [12]: print(random.choice(zan_list))
您真幽默,话从您口中说出来就是不一样。
 
In [13]: print(random.choice(zan_list))
这么魁梧的身材,潇洒的外表,不是大老板才怪了呢!

“科学研究”表明,经常被夸奖小朋友学习更好,年轻人更帅更漂亮,老年人更健康,所以大家赶紧关注AINLP公众号,后台对话试试聊天机器人无名的夸夸聊天功能:


关注AINLP后可后台直接对话聊天机器人无名,提供中英双语聊天,可以直接使用中英机器翻译,可以调戏对联机器人,也可以查询相似词,欢迎来撩,欢迎关注:

注:原创文章,转载请注明出处及保留链接“我爱自然语言处理”:http://www.52nlp.cn

本文链接地址:一行Python代码实现夸夸聊天机器人 http://www.52nlp.cn/?p=11276

风云三尺剑,花鸟一床书---对联数据集和自动对联机器人

很多年前看到过微软的自动对联工具,写了一篇《机器翻译与微软对联》博文,赞了MSRA用统计机器翻译(SMT)的思路做自动对联系统,当时开玩笑的说:

微软研究院的这个“对联语料库”的规模是67万对,所采用的技术是他们自己的web语料库自动获取技术。开玩笑的说,如果周明老师能给我这个语料库,我也能几天之内构建一个简单的“52nlp自动对联系统”。

前段时间看到了一份对联语料:couplet-dataset

https://github.com/wb14123/couplet-dataset

这份数据包含70万条对联数据,按字切分,作者很用心的给大家准备了训练集、测试集还有词汇表;同时还开源了一个基于Tensorflow的深度学习工具来训练自动对联模型: seq2seq-couplet

https://github.com/wb14123/seq2seq-couplet

感兴趣的同学可以直接上手操作,作者甚至还提供了Demo供大家把玩,不过目前貌似需要科学上网才能访问:

https://ai.binwang.me/couplet/

对我来说,看到这份数据的第一想法就是用神经网络机器翻译(NMT)的思路来尝试自动对联系统,这里NMT开源工具可选择的范围很广,我还是选择了Marian,跑了一个简单的对联“翻译”模型,现在接入AINLP公众号聊天机器人,感兴趣的朋友可以一试。具体方法请关注AINLP公众号,然后后台和AINLP聊天机器人互动:

回复“上联 输入上联内容” ,AINLP机器人将自动回复“下联 自动对联内容”,例如:

例子1:
上联 风云三尺剑
自动回复:
下联 花鸟一床书

注意上图来自微软亚洲研究院电脑对联页面:https://duilian.msra.cn/

其他例子可参考:

关于AINLP公众号相关信息,可参考:AINLP公众号索引、关键字和其他相关资源

注:原创文章,转载请注明出处及保留链接“我爱自然语言处理”:http://www.52nlp.cn

本文链接地址:风云三尺剑,花鸟一床书---对联数据集和自动对联机器人 http://www.52nlp.cn/?p=11145