标签归档:自动问答

立委科普:问答系统的前生今世

Deep Learning Specialization on Coursera

李维老师的文章看起来就是过瘾,这篇文章也是刚刚在科学网上看到的,还有下一篇,感兴趣的读者可以继续关注。前段时间IBM超级计算机沃森(Watson)刚刚出了一把风头,也让关注自然语言处理的读者更关注起自动问答系统了,李维老师的这篇博文无疑让我们对于问答系统的前世今生又有了一次深刻的了解,所以厚着脸皮,以下继续全文转载自李维老师的博文:立委科普:问答系统的前生今世

上周信笔涂鸦写了个不伦不类的科普(【立委科普:从产业角度说说NLP这个行当】),写完自我感觉尚可,于是毛遂自荐要求加精:“自顶一哈:不用谦虚,这个应该加精。也不枉我费了大半天的时辰。” 本来是玩笑话,没成想科网的编辑MM在两小时内就真地加精上首页了。前几周还在抱怨,怕被编辑打入另册,正琢磨献花还是金币以求青睐,没想到这么快就峰回路转,春暖花开。响鼓不用重敲,原来还是要发奋码字才行,花言巧语的不行。得,一鼓作气,再码两篇。

言归正传,第一篇先介绍一下问答系统(Question Answering system)的来龙去脉。第二篇专事讲解问答系统中的三大难题 What,How 与 Why。

一 前生

传统的问答系统是人工智能(AI: Artificial Intelligence)领域的一个应用,通常局限于一个非常狭窄专门的领域,基本上是由人工编制的知识库加上一个自然语言接口而成。由于领域狭窄,词汇总量很有限,其语言和语用的歧义问题可以得到有效的控制。问题是可以预测的,甚至是封闭的集合,合成相应的答案自然有律可循。著名的项目有上个世纪60 年代研制的LUNAR系统,专事回答有关阿波罗登月返回的月球岩石样本的地质分析问题。SHRDLE 是另一个基于人工智能的专家系统,模拟的是机器人在玩具积木世界中的操作,机器人可以回答这个玩具世界的几何状态的问题,并听从语言指令进行合法操作。这些早期的AI探索看上去很精巧,揭示了一个有如科学幻想的童话世界,启发人的想象力和好奇心,但是本质上这些都是局限于实验室的玩具系统(toy systems),完全没有实用的可能和产业价值。随着作为领域的人工智能之路越走越窄(部分专家系统虽然达到了实用,基于常识和知识推理的系统则举步维艰),寄生其上的问答系统也基本无疾而终。倒是有一些机器与人的对话交互系统 (chatterbots)一路发展下来至今,成为孩子们的网上玩具(我的女儿就很喜欢上网找机器人对话,有时故意问一些刁钻古怪的问题,程序应答对路的时候,就夸奖它一句,但更多的时候是看着机器人出丑而哈哈大笑。不过,我个人相信这个路子还大有潜力可挖,把语言学与心理学知识交融,应该可以编制出质量不错的机器人心理治疗师。其实在当今的高节奏高竞争的时代,很多人面对压力需要舒缓,很多时候只是需要一个忠实的倾听者,这样的系统可以帮助满足这个社会需求。要紧的是要消除使用者 “对牛弹琴”的先入为主的偏见,或者设法巧妙隐瞒机器人的身份,使得对话可以敞开心扉。扯远了,打住。)
继续阅读

自然语言处理对于IBM超级计算机沃森(Watson)意味着什么?

Deep Learning Specialization on Coursera

  这几天估计很多人都在关注IBM超级计算机沃森(Watson)在美国最受欢迎的智力竞猜电视节目《危险边缘》中的表现,而在经历了三天的比赛后,沃森终于击败了该节目历史上两位最成功的选手肯-詹宁斯和布拉德-鲁特,成为《危险边缘》节目新的王者:IBM超级计算机在智力问答比赛中击败人类。与这场“人机大战”相关的信息中,几乎都会提及“自然语言处理”,毕竟沃森首先需要突破的就是能“理解人类的语言”,这当然是“自然语言处理”的份内之事。而在我看来,IBM沃森看起来更像一个超级的“自动问答”系统,当然,沃森背后凝聚的岂止是“自动问答”,它是一个包含了海量数据处理,机器学习,信息提取,文本分析,知识推理,自动问答等众多技术的的超级“人工智能”结合体。
  下午在看到这个消息时,我有一个很强烈的念头,要写一篇“IBM超级计算机沃森(Watson)背后的自然语言处理技术”,当然,即使写出来,也只能是一个旁观者的角度,需要一定的素材去挖掘。不过刚好有一篇相关的新闻给了我一些启示“IBM宣布八所大学参与沃森计算机系统的开发”:

“我们很高兴与这些在其各自领域表现优异的大学和专家们进行合作,他们可帮助推动作为 IBM沃森系统的支柱的问答技术的进步”,IBM沃森项目组负责人 David Ferrucci 博士表示,“《危险边缘》Jeopardy! 挑战的成功将突破与计算技术的处理和理解人类语言的能力有关的障碍,并将对科学、技术和商业带来深远的影响。”

  这篇文章下面对于每所大学的贡献都给与了简要的描述,通读下来,会发现“自然语言处理”技术在其中扮演着重要的角色。特别是麻省理工学院:

来自麻省理工学院,由计算机科学及人工智能实验室首席研究科学家 Boris Katz 带领的一个研究团队开创了一个名为 START 的在线自然语言问题回答系统,该系统能够使用来自半结构化和结构化信息存储库的信息来非常准确地回答问题。对沃森系统的根本贡献是将问题细分成简单的子问题,以便迅速收集相关回答,然后将这些回答汇合起来形成最终答案的能力。沃森系统的架构还利用了由麻省理工学院开创的对象-属性-值数据模型,该模型支持对半结构化数据源中的信息进行有效的检索,以回答自然语言问题。

  这里面提到的自然语言问答系统START很有意思,有兴趣的读者可以试着问两个问题看看:”What is start" and "How old are you"! 继续阅读