标签归档:自然语言处理

“翻译技术沙龙”第十三次活动详情与小结

Deep Learning Specialization on Coursera

本次活动在外研社大厦的第四会议室举行,共有近40人参加,其中包括来自北京大学、北京戏曲艺术学院、中科院、河北大学等大学的高校教师和研究员,来自北京大学、北京语言大学、中科院等高校的研究生、博士生,来自北京语智云帆、Transoo、上智瑞达等技术开发公司的代表,来自赛门铁克、太科石油等公司的企业代表,来自外研社的场地赞助方代表,还有其他众多语言服务行业的从业者和爱好者。

本次活动分为两个阶段:自由发言阶段和自由讨论阶段。

活动正式开始前,外研社的李鸿飞先生代表外研社向在座的与会人员致辞,欢迎大家到外研社参加此次活动。

自由发言阶段由北京语智云帆公司的总经理魏勇鹏主持,与会人员围绕典型译后编辑、机器翻译产品介绍及使用体验;译后编辑工作模式的效用分析;译后编辑工作模式的流程及注意事项;译后编辑所需的技术及工具支持;译后编辑所需的培训工作等五个议题进行自由发言。

典型译后编辑、机器翻译产品介绍及使用体验:

语智云帆公司的曲丽君女士为在场的与会人员分享了她使用谷歌译者工具包(GTT,Google Translator Toolkit)的使用体验,她提到GTT具有所见即所得的编辑器,除基本的编辑功能外,其对原文格式的保留较好,译员还可以在翻译过程中添加评论;GTT内嵌开放的评分系统,用户可以对译文进行打分;GTT可直接翻译维基百科等网站的网页;GTT支持上传和下载术语库、翻译记忆库;GTT具备多人协作和在线聊天功能。

随后,来自北京大学的杨德林同学补充了几点他对GTT的看法,他认为目前GTT支持的文件类型太少,文件大小有限制,无法导出双语对照文件等。

Transso公司的仝立铭先生和北京大学王华树老师就在线CAT工具如何进行服务器之间的共享,如何提高服务响应速度,CAT工具如何遵循统一的xliff标准发表了自己的观点。

译国译民公司的张琼心女士分享了他们在实际翻译工作中的工作流程,他们会首先对稿件进行译前处理,随后使用CAT工具进行翻译,翻译完成后进行译后编辑(她主要提到的是人工翻译后的译后编辑工作)。

Transoo公司的仝立铭先生随后介绍了他们正在开发的CAT工具的相关情况。

译后编辑工作模式的效用分析:

某著名跨国IT企业代表介绍了其使用Systran等系统进行机器翻译的经验,她提出在实际工作中,公司会为下级服务提供商给出机器翻译的结果,服务提供商会在机器翻译的基础上进行译后编辑。

随后,太科石油的吕经理提出了他们对CAT工具的基本需求,并指出他们目前遇到的最大问题是如何提高校对效率和质量的问题。

来自河北大学的张成智老师讲述了他使用谷歌翻译的感受,他认为谷歌翻译的结果会给他提供一些翻译的思路,帮助他组织语言,谷歌翻译会提示许多词汇的翻译结果,谷歌翻译能够节省翻译的时间。北京大学的杨德林同学补充道,谷歌翻译质量的高低同文件类型领域密切相关。

语智云帆公司的魏勇鹏介绍了一款名为PET的工具,该工具可用于对不同的机器翻译结果进行评测,功能包括记录译后编辑时间、键盘敲击记录、定制评分等。

译后编辑工作模式的流程及注意事项:

语智云帆公司的韩林涛介绍了一篇来自TAUS的文章:“MACHINE TRANSLATION POSTEDITING GUIDELINES”,该指南主要是帮助客户和服务提供商设定清晰的使用译后编辑器的期望。

来自中科院计算所的骆卫华先生和魏勇鹏补充了他们认为的译后编辑的基本要求。

译后编辑所需的技术及工具支持:

骆卫华先生介绍了客户对机器翻译结果的看法,他指出许多客户只是想利用机器翻译,而并不关心机器翻译如何工作;客户对机器翻译有不少负面评价,比如译文不可用,修改译文耗费时间等;他提出对机器翻译的需求需要进行仔细鉴定;最后他介绍了目前机器翻译的两种基本方法,基于规则的方法和基于统计的方法。

来自中科院的博士生刘汇丹补充了基于规则的机器翻译方法的相关问题,提出可以进行多引擎结合导出最佳译文。

魏勇鹏随后介绍他正在从事的技术开发工作,他首先讲解了领域语料库的加工方法,提出目前亟需建立专业知识库,建立实体之间的关系,确定相关标准;他提出需要将用户行为与机器翻译结果结合起来。

Transoo公司的唐义会先生提出了机器翻译后的内容再次被翻译的问题。

译后编辑所需的培训工作:

来自北京大学的高志军老师首先介绍北京大学语言信息工程系目前正在进行的相关培训工作,随后指出了统计方法和规则方法之中遇到的问题。

来自北京大学的王华树老师随后介绍了译后编辑的范畴问题,如什么是译后编辑,广义的和狭义的译后编辑分别是什么;他还介绍了译前译中译后编辑环境相关问题,如翻译编辑器的界面如何设计、界面的灵活性如何处理、术语和记忆库的选择问题、第三方资源的利用问题、如何更好得提高翻译效率等。

自由讨论阶段由北京大学的王华树老师主持。

中科院软件所的代表向与会人员介绍了他们正在研发的汉藏计算机辅助翻译系统。该系统主要结合政府相关的语料,具备基本的翻译编辑功能,支持句段的合并和拆分、术语添加、译文修改等,拥有定制化的输入法和词典。

随后,王华树老师通过一组精彩的幻灯片向与会人员介绍了目前主流的计算机辅助翻译工具的界面和特色。同时,他还根据自己的经验分析了未来一段时间计算机辅助翻译工具的发展趋势,如去格式化、可视化、语境化、网络协作式、开源、语音翻译、机器翻译和翻译记忆整合、工具多功能整合,以及云翻译等。

自由讨论阶段以及中途休息时间,与会的人员还根据今天讨论的话题和自身的工作经验进行了非常热烈的讨论。

最后,参与本次活动的部分人员在外研社大厦门前合影留念,本次活动正式结束。

请大家在新浪微博上多多关注@中文翻译技术沙龙、@一本词典。

EMNLP-CoNLL 2012 List of accepted papers

Deep Learning Specialization on Coursera

EMNLP-CoNLL 2012(Conference on Empirical Methods in Natural Language Processing and Natural Language Learning)会议将于2012年7月12-14日在韩国济州岛举行,以下是会议录用文章的情况,原文请参考官方网站:http://emnlp-conll2012.unige.ch/papers.html

继续阅读

推荐《用Python进行自然语言处理》中文翻译-NLTK配套书

Deep Learning Specialization on Coursera

  NLTK配套书《用Python进行自然语言处理》(Natural Language Processing with Python)已经出版好几年了,但是国内一直没有翻译的中文版,虽然读英文原版是最好的选择,但是对于多数读者,如果有中文版,一定是不错的。下午在微博上看到陈涛sean 同学提供了NLTK配套书的中译本下载,就追问了一下,之后译者和我私信联系,并交流了一下,才发现是作者无偿翻译的,并且没有出版计划的。翻译是个很苦的差事,向译者致敬,另外译者说里面有一些错误,希望能得到nlper们的指正,大家一起来修正这个珍贵的NLTK中文版吧。另外译者希望在“52nlp”上做个推荐,这事是造福nlper的好事,我已经在“资源”里更新了本书的链接,以下是书的下载地址:

PYTHON自然语言处理中文翻译-NLTK Natural Language Processing with Python 中文版

  翻看了一下翻译版,且不说翻译质量,单看排版就让人觉得向一本正式的翻译书籍,说明译者是非常有心的。以下是从翻译版中摘录的“译者的话”:

  作为一个自然语言处理的初学者,看书看到“训练模型”,这模型那模型的,一直不知
道模型究竟是什么东西。看了这本书,从预处理数据到提取特征集,训练模型,测试修改等,一步一步实际操作了之后,才对模型一词有了直观的认识(算法的中间结果,存储在计算机中的一个个pkl 文件,测试的时候直接用,前面计算过的就省了)。以后听人谈“模型”的时候也有了底气。当然,模型还有很多其他含义。还有动词的“配价”、各种搭配、客观逻辑对根据文法生成的句子的约束如何实现?不上机动手做做,很难真正领悟。

  自然语言处理理论书籍很多,讲实际操作的不多,能讲的这么系统的更少。从这个角度
讲,本书是目前世界上最好的自然语言处理实践教程。初学者若在看过理论之后能精读本书,必定会有获益。这也是翻译本书的目的之一。

  本书是译者课余英文翻译练习,抛砖引玉。书中存在很多问题,尤其是第10 章命题逻
辑和一阶逻辑推理在自然语言处理中的应用。希望大家多多指教。可以在微博上找到我(w
eibo.com/chentao1999)。虽然读中文翻译速度更快,但直接读原文更能了解作者的本意。

  原书作者在书的最后列出了迫切需要帮助改进的条目,对翻译本书建议使用目标语言的
例子,目前本书还只能照搬英文的例子,希望有志愿者能加入本书的中文化进程中,为中文
自然语言处理做出贡献。

  将本书作学习和研究之用,欢迎传播、复制、修改。山寨产品请留下译者姓名和微博。
用于商业目的,请与原书版权所有者联系,译者不承担由此产生的责任。

翻译:陈涛(weibo.com/chentao1999)

2012 年4 月7 日

   最后希望大家在读这本书的过程中,记录一下需要勘误的地方,可以在“评论”中给出勘误建议,一起来修正这本书。谢谢!

中文翻译技术沙龙第十次活动报名

Deep Learning Specialization on Coursera

时间:2011年10月15日(周六)下午14:00-17:00
地点:五道口清华科技园
费用:无

题目1: 开源输入法SunPinyin解读
主讲人:NUANCE公司何楠

题目2: 第13届国际机器翻译峰会(13th MT Summit)和第7届全国机器翻译研讨会(CWMT2011)的分享会
主讲人:部分参会人员,具体名单待定

报名截止日期:10月13日(周四)

报名者请使用以下格式,回复到邮箱cmt.salon@gmail.com

姓名:
手机:
基本情况介绍:

中文翻译技术沙龙的豆瓣小组是 http://www.douban.com/group/304684/。

中文翻译技术沙龙的QQ群:
NLP:172478666
CAT:172478453

ACL HLT 2011文章已可下载

Deep Learning Specialization on Coursera

距ACL HLT 2011大会还有几天,不过目前大会的论文已经可以在ACL Anthology上下载了,以下是来自于Min-Yen Ka的群邮件。

一、ACL 2010大会论文集:
Proceedings of the 49th Annual Meeting of the Association for
Computational Linguistics: Human Language Technologies can be found
here:

http://www.aclweb.org/anthology/P/P11/

二、Workshop论文集:
The proceedings of co-located events and workshops to ACL HLT 2011 are now available online.

http://www.aclweb.org/anthology/W/W11/

Proceedings of BioNLP 2011 Workshop
http://www.aclweb.org/anthology/W/W11/#0200

Proceedings of the Fifteenth Conference on Computational Natural
Language Learning
http://www.aclweb.org/anthology/W/W11/#0300

Proceedings of the 5th Linguistic Annotation Workshop
http://www.aclweb.org/anthology/W/W11/#0400

Proceedings of the Workshop on Automatic Summarization for Different
Genres, Media, and Languages
http://www.aclweb.org/anthology/W/W11/#0500

Proceedings of the 2nd Workshop on Cognitive Modeling and
Computational Linguistics
http://www.aclweb.org/anthology/W/W11/#0600

Proceedings of the Workshop on Language in Social Media (LSM 2011)
http://www.aclweb.org/anthology/W/W11/#0700

Proceedings of the Workshop on Multiword Expressions: from Parsing and
Generation to the Real World
http://www.aclweb.org/anthology/W/W11/#0800

Proceedings of the ACL 2011 Workshop on Relational Models of Semantics
http://www.aclweb.org/anthology/W/W11/#0900

Proceedings of Fifth Workshop on Syntax, Semantics and Structure in
Statistical Translation
http://www.aclweb.org/anthology/W/W11/#1000

Proceedings of TextGraphs-6: Graph-based Methods for Natural Language
Processing
http://www.aclweb.org/anthology/W/W11/#1100

Proceedings of the 4th Workshop on Building and Using Comparable
Corpora: Comparable Corpora and the eb
http://www.aclweb.org/anthology/W/W11/#1200

Proceedings of the Workshop on Distributional Semantics and
Compositionality
http://www.aclweb.org/anthology/W/W11/#1300

Proceedings of the Sixth Workshop on Innovative Use of NLP for
Building Educational Applications
http://www.aclweb.org/anthology/W/W11/#1400

Proceedings of the 5th ACL-HLT Workshop on Language Technology for
Cultural Heritage, Social Sciences,
and Humanities
http://www.aclweb.org/anthology/W/W11/#1500

Proceedings of the Workshop on Monolingual Text-To-Text Generation
http://www.aclweb.org/anthology/W/W11/#1600

Proceedings of the 2nd Workshop on Computational Approaches to
Subjectivity and Sentiment Analysis (WASSA 2.011)
http://www.aclweb.org/anthology/W/W11/#1700

Proceedings of BioNLP Shared Task 2011 Workshop
http://www.aclweb.org/anthology/W/W11/#1800

Proceedings of the Fifteenth Conference on Computational Natural
Language Learning: Shared Task
http://www.aclweb.org/anthology/W/W11/#1900

The proceedings of the upcoming SIGDIAL 2011 Conference is now available on the ACL Anthology, here:

http://www.aclweb.org/anthology/W/W11/#2000

The SIGDIAL Anthology page also has been updated.
继续阅读

From Google Research Blog: Google at ACL 2011

Deep Learning Specialization on Coursera

  自然语言处理与计算语言学的盛会ACL 2011即将在美国俄勒冈州波特兰市举行,而Google Research Blog在昨天发表了一篇“Google at ACL 2011”,给大家及时通报了今年Google在ACL 2011上的参与情况。粗略的看了一下,Google今年在ACL上发表的Paper涉及Part-of-Speech Tagging, Named Entity Recognition, Context-Free Parsing, Translation等自然语言处理的基础领域,值得NLPer们一阅。我是在Google Reader上看到的,直接看原文的话在国内可能需要“翻墙”,为了给大家节省一点“翻墙”的时间以及活跃这里的气氛,以下就全文转载了!
继续阅读

立委科普:问答系统的前生今世

Deep Learning Specialization on Coursera

李维老师的文章看起来就是过瘾,这篇文章也是刚刚在科学网上看到的,还有下一篇,感兴趣的读者可以继续关注。前段时间IBM超级计算机沃森(Watson)刚刚出了一把风头,也让关注自然语言处理的读者更关注起自动问答系统了,李维老师的这篇博文无疑让我们对于问答系统的前世今生又有了一次深刻的了解,所以厚着脸皮,以下继续全文转载自李维老师的博文:立委科普:问答系统的前生今世

上周信笔涂鸦写了个不伦不类的科普(【立委科普:从产业角度说说NLP这个行当】),写完自我感觉尚可,于是毛遂自荐要求加精:“自顶一哈:不用谦虚,这个应该加精。也不枉我费了大半天的时辰。” 本来是玩笑话,没成想科网的编辑MM在两小时内就真地加精上首页了。前几周还在抱怨,怕被编辑打入另册,正琢磨献花还是金币以求青睐,没想到这么快就峰回路转,春暖花开。响鼓不用重敲,原来还是要发奋码字才行,花言巧语的不行。得,一鼓作气,再码两篇。

言归正传,第一篇先介绍一下问答系统(Question Answering system)的来龙去脉。第二篇专事讲解问答系统中的三大难题 What,How 与 Why。

一 前生

传统的问答系统是人工智能(AI: Artificial Intelligence)领域的一个应用,通常局限于一个非常狭窄专门的领域,基本上是由人工编制的知识库加上一个自然语言接口而成。由于领域狭窄,词汇总量很有限,其语言和语用的歧义问题可以得到有效的控制。问题是可以预测的,甚至是封闭的集合,合成相应的答案自然有律可循。著名的项目有上个世纪60 年代研制的LUNAR系统,专事回答有关阿波罗登月返回的月球岩石样本的地质分析问题。SHRDLE 是另一个基于人工智能的专家系统,模拟的是机器人在玩具积木世界中的操作,机器人可以回答这个玩具世界的几何状态的问题,并听从语言指令进行合法操作。这些早期的AI探索看上去很精巧,揭示了一个有如科学幻想的童话世界,启发人的想象力和好奇心,但是本质上这些都是局限于实验室的玩具系统(toy systems),完全没有实用的可能和产业价值。随着作为领域的人工智能之路越走越窄(部分专家系统虽然达到了实用,基于常识和知识推理的系统则举步维艰),寄生其上的问答系统也基本无疾而终。倒是有一些机器与人的对话交互系统 (chatterbots)一路发展下来至今,成为孩子们的网上玩具(我的女儿就很喜欢上网找机器人对话,有时故意问一些刁钻古怪的问题,程序应答对路的时候,就夸奖它一句,但更多的时候是看着机器人出丑而哈哈大笑。不过,我个人相信这个路子还大有潜力可挖,把语言学与心理学知识交融,应该可以编制出质量不错的机器人心理治疗师。其实在当今的高节奏高竞争的时代,很多人面对压力需要舒缓,很多时候只是需要一个忠实的倾听者,这样的系统可以帮助满足这个社会需求。要紧的是要消除使用者 “对牛弹琴”的先入为主的偏见,或者设法巧妙隐瞒机器人的身份,使得对话可以敞开心扉。扯远了,打住。)
继续阅读

立委科普:从产业角度说说NLP这个行当

Deep Learning Specialization on Coursera

“NLP is not magic, but the results you can get sometimes seem almost magical.”

这篇文章是前几天在科学网李维老师的博客上看到的,写得很棒,没有在NLP产业摸爬滚打几十年,是写不出的,这里全文转载,原文见科学网博客, 以下转载自李维老师的博文:立委科普:从产业角度说说NLP这个行当

前面一篇博文的本意,是想借题发挥,从工业运用的角度说说 NLP(Natural Language Processing:自然语言处理)这个行当。不好意思,我算是这个行当在工业界的老古董了(学界不算,学界有的是NLP师爷和大牛)。跟我同期学习这行的同门学长们有小20位,由于这个行当不能在工业界形成规模,他们无一例外都在不同时期改行了,我几乎是幸存在工业界的仅有的化石级元老,赶上了工业应用的末班车。我运气比较好,1986年硕士毕业不久就兼职中关村搞机器翻译的开发,1997年博士快结束又赶上了dot康泡沫的美国大跃进,技术资金源源不断。就是在泡沫破灭后的萧条年代,我也一直对这一行抱有信心,但是从来没有像现在这样信心满满。我的预计,今后20年是 NLP 大显神威的时机,NLP 技术支撑的包括搜索在内的各类信息系统是真正的朝阳产业。(卖瓜的说瓜甜,据说连饶教授这样的大牛都不免。所以读者诸君为免在下误导,可在此打个折扣。)

NLP 技术的工业可行性我认为已经完全被证明了(很多人也许还没有意识到)。证明的实例表现在我们解决了三个信息搜索的难题:1 是解决了搜索 how 的难题;2 是解决了搜索 why 的难题;3 是解决了对客户反馈情报及其动机的抽提(譬如客户对一个产品的好恶)。前两个问题是问答搜索业界公认的最难类型的题目,第三个题目涉及的是语言现象中较难把握的主观性言语(subjective language),并非NLP通常面对的对象(objective language,事实描述的客观性言语),因此成为语言处理最难的课题之一(叫 sentiment extraction)。从问答系统角度来看,回答who/when/where等实体(entity)事实(factoid)的问题比较简单,技术相对成熟,最突出的表现就是IBM的问答系统赢得美国家喻户晓的电视智力竞赛Jeopardy的冠军,电脑打败了人脑,见 COMPUTER CRUSHES HUMAN 'JEOPARDY!' CHAMPS)。这是因为 JEOPARDY! 的大多数问题是属于实体事实类的问题。具体细节就不谈了,以后有机会再论。总之,这三大公认的难题在过去五年中被我们一个一个解决,标志了作为实用技术的 NLP 已经过了需要证明自己的阶段。

很长一段时间,我们在学界测量一个系统,使用的是两个指标:1 查准率(precision:准确性, 即抓到的有多大比例是抓对了的);2 查全率(recall:覆盖面,即所有该抓到的有多大比例真地抓到了)。Precision 和 recall 的定义如下:

Precision 查准率 = correct 查对数 / (correct 查对数 + spurious 查错数)
Recall 查全率 = correct 查对数 / (correct 查对数 + missing 查漏数)

由于自然语言的歧义(和诡异),要想编制一套两项指标综合水平(术语叫 F-score)都很高的系统非常不容易。这跟打假也差不多,宁肯错杀一千,也不放过一个的蒋中正野蛮政策保证的是查全率;而宁肯放过一千,也不错杀一个的西方文明世界的准则保证的是查准率。要想兼顾二者,做到打得准也打得全,那是很难的。于是我们挖煤工人有时不得不叹气,面对汪洋大海的语言自觉渺小,吾生也有涯,口水没有涯,殆矣,觉得没什么指望了,疑惑红旗到底可以打得多久?

但是,事实是,自然语言系统能否实用,很多时候并不是决定于上述两个学界公认的指标。在信息爆炸的时代,在面对海量数据的时候,还有一个更重要的指标决定着一个系统在现实世界的成败。这个指标就是系统的吞吐量(through-put),系统可以不可以真正地 scale-up。由于电脑业的飞速发展,硬件成本的下降,由于并行分布式运算技术的成熟,吞吐量在现实中的瓶颈主要是经济上的羁绊,而不是技术意义上的难关。运行一个 farm 的 servers,只要有财力维护,能耐的工程师完全可以做到。其结果是革命性的。这种革命性成功的最突出的表现就是 Google 和 Facebook 等公司的做大。

在处理海量数据的问题解决以后,查准率和查全率变得相对不重要了。换句话说,即便不是最优秀的系统,只有平平的查准率(譬如70%,抓100个,只有70个抓对了),平平的查全率(譬如50%,两个只能抓到一个),只要可以scale up,一样可以做出优秀的实用系统来,创造应用程式的奇迹。为什么?根本原因在于两个因素:一是爆炸时代的信息冗余度;二是人类信息消化的有限度。查全率的不足可以用增加所处理的数据量来弥补,这一点比较好理解。既然有价值的信息,有统计意义的信息,不可能是“孤本”,它一定是被许多人以许多不同的说法重复着,那么查全率不高的系统总会抓住它也就没有疑问了。从信息消费者的角度,一个信息被抓住一万次,与被抓住一千次,是没有区别的,信息还是那个信息,只要准确就成。问题是一个查准率不理想的系统怎么可以取信于用户呢?如果是70%的系统,100条抓到的信息就有30条是错的,这岂不是鱼龙混杂,让人无法辨别,这样的系统还有什么价值?沿着这个思路,别说70%,就是高达90%的系统也还是错误随处可见。这样的视点忽略了实际系统中的信息筛选(sampling)与整合(fusion)的环节,因此夸大了系统的个案错误对最终结果的负面影响。实际上,典型的情景是,面对海量信息源,信息搜索者的几乎任何请求,都会有数不清的潜在答案。由于信息消费者是人,不是神,吃的是五谷杂粮,用的是一目最多十行的双眼,靠的是总比电脑慢三万拍的人脑,即便有一个完美无误的理想系统能够把所有结果,不分巨细都提供给他,他也无福消受,simply overwhelmed,就好比再超人的皇帝也无法应对360后宫720殿一样。因此,一个实用系统必须要做筛选整合,把统计上最有意义的结果呈现出来。这个筛选整合的过程可以保证最终结果的质量远远高于系统的个案质量。

总之,size matters,多了就不一样了。那天跟镜子提到这个在黑暗与半明半暗中摸索了几十年悟出来的体会,镜兄气定神闲地说:“那自然,大数定理决定的”。好像一切都在他的预料之中!!

信息的关键载体之一是语言。只要有语言,就需要NLP,你说说NLP该不该有光明的前景?

Quote:
NLP is not magic, but the results you can get sometimes seem almost magical.
(“NLP 不是魔术,但是,其结果有时几乎就是魔术一般神奇。”)

引自:http://www.confidencenow.com/nlp-seduction.htm

相关博文:【据说,神奇的NLP可以增强你的性吸引力,增加你的信心和幽会成功率】
http://bbs.sciencenet.cn/home.php?mod=space&uid=362400&do=blog&id=434774

百度搜索研发部专场招聘会——3月26日(周六)

Deep Learning Specialization on Coursera

鉴于对NLP背景同学的人才需求,百度搜索研发部计划在3月份做一场专场招聘,以下内容为代发:

百度搜索研发部将在3月26日(周六)举行专场招聘会,相关职位火热招聘中。

欢迎访问http://hr.baidu.com/extension/20110225/zhaopin.html了解招聘会详情并在线投递职位!

百度

2011年3月