标签归档:自然语言处理

中文分词工具在线PK新增:FoolNLTK、HITLTP、StanfordCoreNLP

继续中文分词在线PK之旅,上文《五款中文分词工具在线PK: Jieba, SnowNLP, PkuSeg, THULAC, HanLP》我们选择了5个中文分词开源工具,这次再追加3个,分别是FoolNLTK、哈工大LTP(pyltp, ltp的python封装)、斯坦福大学的CoreNLP(stanfordcorenlp is a Python wrapper for Stanford CoreNLP),现在可以在AINLP公众号测试一下:中文分词 我爱自然语言处理

以下是在Python3.x & Ubuntu16.04 的环境下测试及安装这些中文分词器:
继续阅读

五款中文分词工具在线PK: Jieba, SnowNLP, PkuSeg, THULAC, HanLP

最近玩公众号会话停不下来:玩转腾讯词向量:Game of Words(词语的加减游戏),准备把NLP相关的模块搬到线上,准确的说,搬到AINLP公众号后台对话,所以,趁着劳动节假期,给AINLP公众号后台聊天机器人添加了一项新技能:中文分词线上PK,例如在AINLP公众号后台对话输入:中文分词 我爱自然语言处理,就可以得到五款分词工具的分词结果:

现在的开源中文分词工具或者模块已经很丰富了,并且很多都有一些在封闭测试集上的效果对比数据,不过这仅仅只能展现这些分词工具在这个封闭测试集上的效果,并不能全面说明问题,个人觉得,选择一个适合自己业务的分词器可能更重要,有的时候,还需要加一些私人定制的词库。

这次首先选了5款中文分词工具,严格的来说,它们不完全是纯粹的中文分词工具,例如SnowNLP, Thulac, HanLP都是很全面的中文自然语言处理工具,这次,先试水它们的中文分词模块。安装这些模块其实很简单,只要按官方文档的方法安装即可,以下做个简单介绍,在Python3.x的环境下测试,Ubuntu16.04 或 MacOS 测试成功。
继续阅读

AI技术内参:关于数据科学的9个分享

最近被安利了一个极客时间的专栏:《AI技术内参》,作者是洪亮劼老师,美国Etsy工程总监,前雅虎研究院高级研发经理。选了一些章节试读,觉得可以安利一下这个专栏,好东西要分享,希望你能耐心看完这篇文章。通过这个专栏大概可以一窥工业界的一些玩法,工业界和学术界的碰撞,另外从目录来看这个专栏覆盖的范围也很广,包括自然语言处理、计算机视觉、数据科学、推荐系统、广告系统、搜索核心技术的传统机器学习方法和新的深度学习方法。这个专栏目前已经完结,稍微花一些时间大概就可以看完或者听完,从现在开始到5月4日24时,79元,大概一本书的价格,感兴趣的同学可以参与:《AI技术内参

前十讲主要是关于数据科学的一些经验,分享一下打动我的9个点,关于数据科学,个人觉得这些对于还没有进入工业界的同学特别是想进入人工智能行业的同学来说很有参考意义,AI相关技术的算法工程师不仅仅玩算法,玩框架,更需要有数据科学思维、系统闭环思维、以及面向产品思维:


继续阅读

玩转腾讯词向量:Game of Words(词语的加减游戏)

上一篇文章《腾讯词向量实战:通过Annoy进行索引和快速查询》结束后,觉得可以通过Annoy做一点有趣的事,把“词类比(Word Analogy)”操作放到线上,作为AINLP公众号聊天机器人的新技能,毕竟这是word2vec,或者词向量中很有意思的一个特性,刚好,Annoy也提供了一个基于vector进行近似最近邻查询的接口:

get_nns_by_vector(v, n, search_k=-1, include_distances=False) same but query by vector v.

英文词类比中最有名的一个例子大概就是: king - man + woman = queen, 当我把这个例子换成中文映射到腾讯的中文词向量中并且用gensim来计算,竟然能完美复现:国王 - 男人 + 女人 = 王后

In [49]: result = tc_wv_model.most_similar(positive=[u'国王', u'女人'], negative
    ...: =[u'男人'])
 
In [50]: print("%s\t%.4f" % result[0])
王后    0.7050

然后把国王换成皇帝,还能完美的将“王后”替换为“皇后”:

In [53]: result = tc_wv_model.most_similar(positive=[u'皇帝', u'女人'], negative
    ...: =[u'男人'])
 
In [54]: print("%s\t%.4f" % result[0])
皇后    0.8759

虽然知道即使在英文词向量中,完美的词类比列子也不多,另外据说换到中文词向量场景下,上述例子会失效,没想到在腾讯AI Lab这份词向量中得到完美复现,还是要赞一下的,虽然感觉这份腾讯词向量在处理词的边界上不够完美,引入了很多无关介词,但是"大力(量)出奇迹",882万的词条数,一方面有很高的词语覆盖率,另外一方面可以完美的将英文词向量空间中的"king - man + woman = queen"映射到中文词向量空间的"国王 - 男人 + 女人 = 王后",不得不感慨一下数学之美,词语之美。

在此前google的时候,据说在中文词向量场景下一个更容易出现的词类比例子是:机场-飞机+火车=火车站,这个确实可以通过gensim在腾讯词向量中得到复现:

In [60]: result = tc_wv_model.most_similar(positive=[u'机场', u'火车'], negative
    ...: =[u'飞机'])
 
In [61]: print("%s\t%.4f" % result[0])
火车站  0.7885

通过Annoy,我把这个服务做到线上,现在可以在AINLP公众号后台测试,结果看起来也还不错:“机场-飞机+火车=高铁站”:


继续阅读

斯坦福大学深度学习自然语言处理课程CS224N 2019 全20个视频分享

近期一直关注着斯坦福大学深度学习自然语言处理课程CS224N在油管上的视频更新情况,直到昨天看到他们分享了第20个视频资源:

Stanford CS224N: NLP with Deep Learning | Winter 2019 | Lecture 20 – Future of NLP + Deep Learning

结合斯坦福大学CS224n官网课程Schedule,大概率这门课程的视频官方应该分享完了:CS224n: Natural Language Processing with Deep Learning Stanford / Winter 2019

通过youtube-dl以及bypy两个神器这里再次更新一下CS224n的20个课程视频,感兴趣的同学可以关注我们的公众号AINLP,回复'cs224n'获取全部视频合集:

最后列一下cs224N的相关资源:

课程主页:
http://web.stanford.edu/class/cs224n/index.html

官方课程视频网站:
http://onlinehub.stanford.edu/cs224

官方油管视频List:
https://www.youtube.com/playlist?list=PLoROMvodv4rOhcuXMZkNm7j3fVwBBY42z

课程除视频以为的相关资料都可以从schedule下载,包括ppt等:
http://web.stanford.edu/class/cs224n/index.html#schedule

课程优秀项目网站:
http://web.stanford.edu/class/cs224n/project.html

B站视频链接:
https://www.bilibili.com/video/av46216519

参考:
2019斯坦福CS224n深度学习自然语言处理课程视频和相关资料分享

腾讯词向量实战:通过Annoy进行索引和快速查询

上周《玩转腾讯词向量:词语相似度计算和在线查询》推出后,有同学提到了annoy,我其实并没有用annoy,不过对annoy很感兴趣,所以决定用annoy试一下腾讯 AI Lab 词向量

学习一个东西最直接的方法就是从官方文档走起:https://github.com/spotify/annoy , Annoy是Spotify开源的一个用于近似最近邻查询的C++/Python工具,对内存使用进行了优化,索引可以在硬盘保存或者加载:Approximate Nearest Neighbors in C++/Python optimized for memory usage and loading/saving to disk。

Annoy (Approximate Nearest Neighbors Oh Yeah) is a C++ library with Python bindings to search for points in space that are close to a given query point. It also creates large read-only file-based data structures that are mmapped into memory so that many processes may share the same data.

照着官方文档,我在自己的机器上进行了简单的测试(Ubuntu16.04, 48G内存, Python2.7, gensim 3.6.0, annoy, 1.15.2),以下是Annoy初探。

安装annoy很简单,在virtuenv虚拟环境中直接:pip install annoy,然后大概可以按着官方文档体验一下最简单的case了:

In [1]: import random
 
In [2]: from annoy import AnnoyIndex
 
# f是向量维度
In [3]: f = 20
 
In [4]: t = AnnoyIndex(f)
 
In [5]: for i in xrange(100):
   ...:     v = [random.gauss(0, 1) for z in xrange(f)]
   ...:     t.add_item(i, v)
   ...:     
 
In [6]: t.build(10)
Out[6]: True
 
In [7]: t.save('test.ann.index')
Out[7]: True
 
In [8]: print(t.get_nns_by_item(0, 10))
[0, 45, 16, 17, 61, 24, 48, 20, 29, 84]
 
# 此处测试从硬盘盘索引加载
In [10]: u = AnnoyIndex(f)
 
In [11]: u.load('test.ann.index')
Out[11]: True
 
In [12]: print(u.get_nns_by_item(0, 10))
[0, 45, 16, 17, 61, 24, 48, 20, 29, 84]

看起来还是比较方便的,那么Annoy有用吗? 非常有用,特别是做线上服务的时候,现在有很多Object2Vector, 无论这个Object是Word, Document, User, Item, Anything, 当这些对象被映射到向量空间后,能够快速实时的查找它的最近邻就非常有意义了,Annoy诞生于Spotify的Hack Week,之后被用于Sptify的音乐推荐系统,这是它的诞生背景:
继续阅读

玩转腾讯词向量:词语相似度计算和在线查询

先讲一个故事,自从《相似词查询:玩转腾讯 AI Lab 中文词向量》发布后,AINLP公众号后台查询相似词的信息还是蛮多的。前段时间的一天,发现一个女生id频繁的查询相似词,近乎每分钟都在操作(这里要说明一下,腾讯公众号后台是可以看到用户最近二十条消息记录的,信息会保留5天)。然后第二天这个id依然很规律的在查询相似词,作为偶尔玩玩爬虫、也弄弄网站的程序员,第一反应会不会是程序模拟操作,但是观察下来虽然很规律, 查询频率不像是机器所为,另外貌似到了晚上10点之后这个id就停止查询了。然后到了第3天,依然发现这个id在查询,所以我没有忍住,回复了一句:请确认是否是人工查询?如果这个id没有反馈,依然我行我素的查询,我可能就准备拉黑这个id了。但是她很快回复了一句:是人工查询;我有点好奇的追问了一句:为什么不通过程序直接加载和查询腾讯词向量呢?岂不更方便。她回复:不懂程序,不会,然后大概追加了一句:我在做一个课程设计,需要积攒一批相似词,所以通过AINLP公众号这个功能手动查询了一批词,抱歉带来困扰,感谢背后的程序员。

这个回复让我突然有一种释然,也很开心,觉得做了一件有意义的事情,在52nlp微博的简介里,有两句话:Make something people want; A blog for fools written by fools。第一句话“Make something people want”, 大概就是做用户想用或者有用的东西,这句话我忘了什么时候看到的,因为它触动了我,所以记录在微博简介里了,不过google后发现是硅谷孵化器YC的“口头禅”。

关于word2vec词语相似度,这里早期写过几篇相关的文章:《中英文维基百科语料上的Word2Vec实验》、《维基百科语料中的词语相似度探索》,《相似词查询:玩转腾讯 AI Lab 中文词向量》对于熟悉word2vec,熟悉gensim的同学来说,使用这份腾讯AI Lab的词向量其实很简单,只要有个内存大一些的机器(实际加载后貌似用了12G左右的内存),大概就可以通过几行python代码进行查询了:

from gensim.models.word2vec import KeyedVectors
wv_from_text = KeyedVectors.load_word2vec_format(file, binary=False)

但是这个世界大家并不都是程序员,即使是程序员也有很多同学不了解word2vec, 不知道gensim,所以这个word2vec相似词在线查询功能突然变得有点意思,有那么一点用了。其实,当时给AINLP后台聊天机器人加这个技能点的时候,还想过是否有用或者有必要,不过,经历了开头这件事,并且发现后台有越来越多不同领域查询词的时候,我能感知这件事还是很有意义的,特别对于那些不懂程序的同学来说。不过关于这份腾讯词向量相似词在线查询接口,虽然借助了gensim,但是在线服务的时候并不是基于gensim,用了一些trick,对于高并发也没有太多压力,所以对于开头这个小姑娘的持续查询操作,并不介意,还很欢迎,我介意的是机器恶意查询。

当然,还是有很多同学熟悉词向量,熟悉word2vec,也熟悉gensim的接口,所以发现有部分同学很自然的加了查询操作:相似度 词1 词2,期待AINLP后台相似词查询功能能给出两个值词语相似度,这个需求还是很自然的,所以昨晚,我花了一点时间,把这个接口也加上了,感兴趣的同学可以关注AINLP公众号:

然后后台对话操作,例如这样,选择计算AI和人工智能的相似度,AI和NLP的相似度:


继续阅读

夸夸聊天机器人升级:从随机到准个性化

来,你们要的夸夸聊天机器人升级了,针对问题内容进行“准个性化”回答,目前可以凑合用,但是聊胜于无,欢迎来撩,使用方法,关注公众号AINLP,后台对话即可:

自从《一行Python代码实现夸夸聊天机器人》发布后,有不少同学期待着夸夸聊天机器人的升级。但是巧妇难为无米之炊,所以我准备了夸夸语料库:《为了夸夸聊天机器人,爬了一份夸夸语料库》。有了夸夸问答语料之后,针对聊天机器人或者智能问答就有很多方法可以操作,最直接的一个想法就是计算问题与夸夸语料库中的标题(以及内容)的语义相似度,然后取最匹配问题的答案作为结果返回。

我大概就是是这样操作的,首先对语料库进行了简单的清洗和重组,清洗掉没有答案的,以及作者自己回答的答案,然后将每个问题的答案组合为list作为随机答案。不过更直接一些,只计算问题和标题的相似度,按一定的阈值进行过滤,所以这个版本,还存在很多问题,大家先凑合着用,后续还有升级计划。

这方面比较关键的一个问题就是相似问题匹配或者句子语义相似度计算。关于文本相似度,词语或者短语级别的语义相似度在词向量范畴下解决的很漂亮,感兴趣的同学可以体验:《相似词查询:玩转腾讯 AI Lab 中文词向量》,但是到了句子级别或者文档级别,目前貌似还没有很漂亮的解决方案,或者我调研的不够,有线索的同学欢迎留言探讨。

最后关于如何使用这个夸夸聊天机器人,首先关注我们的公众号AINLP,然后后台和聊天机器人对话即可,不过需要一些关键字触发夸夸模式,譬如“。。。求夸。。”, “。。。求赞。。”, “。。。,求鼓励”, “。。。, 求表扬”, 或者 “。。夸我。。。。”, “。。。鼓励我。。。”等等,否则进入闲聊模式。关于聊天机器人,目前希望大家不要抱太高的期望,把它当傻子即可:

聊天过程中如果问题没有匹配上或者过于简单,会回退到随机模式:

当然,这里选的case一定是准备过的,还有一些bad case没有给你们看,欢迎测试,欢迎建议,特别是如何匹配问题域的建议,非常欢迎。
继续阅读

在NLP领域中文对比英文的难点分析 (达观数据 陈运文)

作者:达观数据创始人  陈运文

人类经过漫长的历史发展,在世界各地形成了很多不同的语言分支,其中汉藏语系印欧语系是使用人数最多的两支。英语是印欧语系的代表,而汉语则是汉藏语系的代表。中英文语言的差异十分鲜明,英语以表音(字音)构成,汉语以表义(字形)构成,印欧和汉藏两大语系有很大的区别。

尽管全世界语言多达5600种,但大部数人类使用的语言集中在图中的前15种(覆盖全球90%以上人群)。其中英语为母语和第二语的人数最多,近14亿人,是事实上的世界通用语。其次是汉语,约占世界人口的23%。英语和汉语相加的人数占世界总人数的近一半,因此处理中英文两种语言非常关键。

人工智能时代,让计算机自动化进行文字语义理解非常重要,广泛应用于社会的方方面面,而语言本身的复杂性又给计算机技术带来了很大的挑战,攻克文本语义对实现AI全面应用有至关重要的意义。相应的自然语言处理(Natural Language Processing,NLP技术因而被称为是“人工智能皇冠上的明珠”。

中国和美国作为AI应用的两个世界大国,在各自语言的自动化处理方面有一些独特之处。接下来笔者对中文和英文语言特点的角度出发,结合自己的从业经验来归纳下两种语言下NLP的异同点。(达观数据陈运文)
继续阅读

你是如何了解或者进入NLP这个领域的?

每个NLPer都有自己的故事,每个故事都很精彩!

前两天在AINLP公众号上做了一期赠书活动:8本NLP书籍任你选,发起了一个话题留言活动:你是如何了解或者进入NLP这个领域的?没想到,活动发布后,大家参与的热情极高,收到了200多条留言,但是限于微信公众号留言只能精选100条放出,所以有些遗憾,很多后来的同学的留言虽然写得很好,但是没有办法放出来了。今天是周末,我又认真的从前到后读了一遍,感慨每个人都有自己的NLP故事,这里做一次汇总,尽量把留言都放出来,就不一一回复了,感谢大家的支持与参与。

从留言来看,很多同学是读书或者在实验室的时候“偶然”入了NLP这行,和很多同学一样,我也是读书时误打误撞进入了这个领域,我本身读得是数学系,研究生读得是自动化系模式识别与智能系统专业,实验室有好几个方向,刚好一个方向是统计机器翻译,老师觉得数学系的背景适合这个,就安排我做这个方向了,所以很感谢老师当年的安排,让我和NLP结缘。最后再留一个话题,感兴趣的同学可以参与:你做的第一个NLP任务或者课题是什么?

另外这次赠书活动原计划从留言中选择4名同学赠书,但是大家参与活动的积极性太高,让人感动的留言不少,所以综合大家的留言内容、关注的时间、互动的频率等各个因素,我额外再赠送6本书给参与活动的同学,但是依然僧多肉少,请没有获奖的同学见谅,以后还有机会,大家先混个脸熟。请以下10名的同学直接添加微信AINLP2选择书籍和留收件信息:

C.S. , 意犹未尽, 迷糊s啦, 锐, 少女情怀总是诗, 璐璐, 黄金金, Mr.NLP, 瓜子, 川上月

其中瓜子同学作为20考研党代表和求赞第一名,这里送个祝福;川上月同学是博客、微博以及公众号的老读者,也投过稿,这里作为老读者代表,送个感谢。另外赠书活动昨晚已经抽奖完毕,大家可查看中奖结果,请以下4名同学也请一并添加微信AINLP2,留相关信息:

Emotion. , 发局, Null, cf

另外我们还在微博举行了同样的抽奖活动,感兴趣的同学依然可以移步参与,活动到下周四结束。

https://weibo.com/2104931705/HlW4Q2XNK

以下选自各位NLPer的留言,再次感谢大家。
继续阅读