标签归档:过拟合

斯坦福大学机器学习第十课“应用机器学习的建议(Advice for applying machine learning)”

斯坦福大学机器学习斯坦福大学机器学习第十课“应用机器学习的建议(Advice for applying machine learning)”学习笔记,本次课程主要包括7部分:

1) Deciding what to try next(决定下一步该如何做)

2) Evaluating a hypothesis(评估假设)

3) Model selection and training/validation/test sets(模型选择和训练/验证/测试集)

4) Diagnosing bias vs. variance(诊断偏差和方差)

5) Regularization and bias/variance(正则化和偏差/方差)

6) Learning curves(学习曲线)

7) Deciding what to try next (revisited)(再次决定下一步该做什么)

以下是每一部分的详细解读。

1) Deciding what to try next(决定下一步该如何做)

对学习算法进行调试:
假设你实现了一个正则化的线性回归算法来预测房价:

正则化线性回归模型-我爱公开课-52opencourse.com

然而,当你用它来测试一批新的房屋数据时,发现预测出来的数据是很不准确的,那么,下一步你该干啥?以下提供一些选项,但是暂时不过多解释,当我们学完这一章时,就知道选择这些选项的依据了。

- 获取更多的训练样本

- 尝试使用更少的特征的集合

- 尝试获得其他特征

- 尝试添加多项组合特征

- 尝试减小 \lambda

- 尝试增加 \lambda

机器学习(算法)诊断(Diagnostic)是一种测试方法,使你能对一种学习算法进行深入的认识,知道什么能运行,什么不能运行,并且能指导你如何最大限度的提高学习算法的性能。

诊断测试虽然需要一些时间来实现,但是这样做可以更有效的利用你的时间。

2) Evaluating a hypothesis(评估假设)

在房价预测问题中,如果Hypotheis如下:

评估假设hypothesis-我爱公开课-52opencourse.com

定义了如下的特征:

房价预测问题特征定义模版-我爱公开课-52opencourse.com

并且对训练数据做了非常好的拟合:

房价预测拟合图-我爱公开课-52opencourse.com

但是对不在训练集的新数据的预测的很差,失去通用性,那么,我们该如何评估这个假设?

首先,我们需要将数据集进行切分,一部分(例如70%)作为训练集,另一部分(例如30%)作为测试集:

假设评估中的数据集-我爱公开课-52opencourse.com

对于线性回归来说:
- 通过最小化训练集的error J(\theta)来学习参数\theta;
- 再计算测试集的error:

线性回归测试集error-我爱公开课-52opencourse.com

对于逻辑回归来说,与线性回归相似:
-首先从训练集中学习参数\theta;
-计算测试集的error:

逻辑回归测试集error公式-我爱公开课-52opencourse.com

-额外再加一个错误分类的error(或者称为0/1错误分类error);

3) Model selection and training/validation/test sets(模型选择和训练/验证/测试集)

首先让我们来回顾上面那个过拟合的例子:

机器学习模型选择过拟合例子-我爱公开课-52opencourse.com

一旦参数\theta_0, \theta_1,...,\theta_4对于某些数据集(训练集)适应(最终学习的参数),那么基于该数据及参数所计算的模型的error(训练误差J(\theta)很可能比实践泛化的error要小。

所以我们需要考虑一下模型选择(Model Selection)的问题,首先来看一个选择多项式回归模型的例子,我们有1-10次方的多项式回归模型,或者hypothesis:

模型选择多项式回归问题-我爱公开课-52opencourse.com

如何选择模型?

这里我们首先基于训练集学习参数,然后计算测试集的error, 最后选择测试集error最小的多项式回归模型,例如这里我们选择:

5次方多项式回归模型-我爱公开课-52opencourse.com

那么这个模型的泛化能力如何?测试集的error J_{test}(\theta^{(5)})基本能代表它的泛化能力,但是这是否准确?
我们用测试集来选择参数,然后有用测试集来评估假设(hypothesis), 看起来这样的评估是基于测试集进行了优化的?
的确存在一点问题,所以,这里我们再引入第三个集合:交叉验证集,我们用它来选择参数,而仅仅在测试集上评估假设。
对于原始的数据集,一种比较典型的划分方式是60%的训练集,20%的交叉验证集以及20%的测试集:
训练集-交叉验证集-测试集-我爱公开课-52opencourse.com

有了这三个数据集合,我们也可以分别定义它们各自的error:

训练集误差-验证集误差-测试集误差-我爱公开课-52opencourse.com

但是在实际使用时,我们通过训练集学习到参数, 再计算交叉验证集上的error, 再选择一个在验证集上error最小的模型,最后再在测试集上估计模型的泛化误差(error):

实践的模型选择过程-我爱公开课-52opencourse.com

4) Diagnosing bias vs. variance(诊断偏差和方差)

首先看一下偏差和方差的例子,这些例子和正则化那一章的例子相同,不过同时被贴上了偏差或方差的标签:

a) 高偏差(欠拟合):

高偏差-欠拟合-我爱公开课-52opencourse.com

b) 高方差(过拟合):
高方程-过拟合-我爱公开课-52opencourse.com

c) 合适的拟合:
合适的拟合-我爱公开课-52opencourse.com

我们来计算这三个模型的train error和cross validation error:

训练集及交叉验证集的误差-我爱公开课-52opencourse.com

我们会发现:

当多项式回归模型的次数d=1,也就是高偏差(欠拟合)时,训练集误差和验证集误差都比较大;

当d=4, 也就是高方差(过拟合)时,训练集误差会很小(拟合的非常好),但是验证集误差却很大;

当d=2,也就是拟合的刚刚好时,无论训练集误差还是验证集误差都刚刚好,介于上面两者之间。

如果用图形表示,就是下面这个样子:

训练集误差和验证集误差画图表示-我爱公开课-52opencourse.com

有了上面的解释,我们就可以来诊断偏差还是方差的问题了。假设你的学习算法表现的不尽如人意,没有达到你的期望,如何来判定它是一个偏差的问题还是方差的问题?我们可以计算他们的训练集误差和交叉验证集误差,如果它们落入了上图的“头部”区域,可以判断是偏差(欠拟合)问题,如果落入了“尾部”区域,可以判断是方差(过拟合)问题,如下图所示:

偏差问题还是方差问题-我爱公开课-52opencourse.com

最后,对于偏差还是方差的问题,可以做一个总结如下:

偏差方差问题总结-欠拟合过拟合-我爱公开课-52opencourse.com

5) Regularization and bias/variance(正则化和偏差/方差)

对于过拟合问题,正则化是一个非常有效的解决方案,所以这一小节我们将考虑正则化和偏差/方差的关系。首先来看一个正则化的线性回归的例子:正则化的线性回归模型-我爱公开课-52opencourse.com

如果正则化参数\lambda过大,一种极端的情况例如\lambda = 10000, 那么除去\theta_0,所学的其他参数都将近似为0,这就是欠拟合或高偏差的情况:

正则化参数过大欠拟合高偏差-我爱公开课-52opencourse.com

如果\lambda过小,极端的情况是\lambda = 0,等于没有对线性回归模型进行正则化,那么过拟合高方差的问题就很容易出现:

正则化参数过小过拟合高方差-我爱公开课-52opencourse.com

如果\lambda选取的比较合适,介于上述二者之间,那么我们将得到合适的拟合:

正则化参数合适拟合也合适-我爱公开课-52opencourse.com

那么,如何选择正则化参数 \lambda ?

对于数据集,我们仍将它划为3份:训练集,验证集,测试集。对于给定的正则化模型,例如上面的例子,我们按 \lambda 从小到大的顺序依次取数,然后在训练集上学习模型参数,在交叉验证集上计算验证集误差,并选择误差最小的模型, 也就是选择 \lambda,最后再在测试集上评估假设:

选择正则话参数的过程-我爱公开课-52opencourse.com

偏差/方差可以作为正则化参数 \lambda 的函数,与上一小节相似,我们也可以画出这个函数图,这样我们就能评估 \lambda 合适的选择范围了:

作为正则化参数函数的方差和偏差-我爱公开课-52opencourse.com

6) Learning curves(学习曲线)

这一小节考虑Learning curves(学习曲线)的问题,主要针对的是训练样本数目来观察训练集误差和验证集误差之间的差异:
训练集误差交叉验证集误差-我爱公开课-52opencourse.com

以下来考虑训练样本数目和模型的关系。以二次项多项式回归为例,如果仅有一个训练样本,那么模型很容易和样本点拟合,训练集误差近似为0,几乎可以忽略不计,而验证集误差可能会很大;如果有两个样本点,模型也很容易拟合样本点,训练集误差会略大一点,验证集误差可能会小一些;以此类推,当样本点比较多时,模型虽然不能拟合所有的样本点,但是泛化能力会更好一些,因此训练集误差会更大一点,而验证集误差会更小一些,如下图所示:

二次项多项式回归-我爱公开课-52opencoruse.com

而误差和训练样本数目m的关系或者学习曲线如下:

训练误差和验证集误差与训练样本大小的关系-我爱公开课-52opencourse.com

以下通过学习曲线来考虑高偏差和高方差的问题。对于高偏差欠拟合问题:

高偏差欠拟合问题举例-我爱公开课-52opencourse.com

即使增大了训练样本数目,模型拟合的依然不够,依然还是欠拟合问题。以下是高偏差欠拟合问题的学习曲线:
高偏差欠拟合问题学习曲线-我爱公开课-52opencourse.com

我们发现,如果一个学习算法是高偏差的,那么它的训练误差和验证集误差在一定的训练样本数目之后都很高,而且不会随着样本数目的增大而改变,所以对于高偏差欠拟合的问题,增加训练样本数目不是一个好的解决办法。

而对于高方差过拟合问题:

高方差过拟合问题-我爱公开课-52opencourse.com

增大样本数目后,模型的泛化能力会好一些,一些是高方差过拟合问题的学习曲线:

高方差过拟合学习曲线-我爱公开课-52opencourse.com

我们发现,如果一个学习算法是高方差的,那么它的训练误差和验证集误差在一定的训练样本数目之后虽然有差异,但是会随着样本数目的增大而减小她们之间的gap,所以对于高方差过拟合的问题,增加训练样本数目是解决方法之一。
7) Deciding what to try next (revisited)(再次决定下一步该做什么)

好了,说完了这么多与偏差/方差有关的问题,我们再次回到本章的开头的问题,
假设你实现了一个正则化的线性回归算法来预测房价,然而当你用它来测试一批新的房屋数据时,发现预测出来的数据是很不准确的,那么,下一步你该干啥?以下这些选项,分别针对的是高方差或高偏差的问题,你可以尝试用上述小节的一些方法来诊断你的学习算法,不过对于下述选项,需要你考虑一下是针对高偏差还是方差的问题,可以先思考一分钟再看答案:

- 获取更多的训练样本

- 尝试使用更少的特征的集合

- 尝试获得其他特征

- 尝试添加多项组合特征

- 尝试减小 \lambda

- 尝试增加 \lambda

答案:

- 获取更多的训练样本 - 解决高方差

- 尝试使用更少的特征的集合 - 解决高方差

- 尝试获得其他特征 - 解决高偏差

- 尝试添加多项组合特征 - 解决高偏差

- 尝试减小 \lambda - 解决高偏差

- 尝试增加 \lambda -解决高方差

最后我们再来看一下神经网络和过拟合的问题:

以下是“小”的神经网络(参数比较少,很容易欠拟合):

简单的神经网络-我爱公开课-52opencourse.com

它的计算代价较少。

以下是“大”的神经网络(参数比较多,很容易过拟合):

复杂的神经网络-我爱公开课-52opencourse.com

它的计算代价较大,对于神经网络过拟合的问题,可以通过正则化(\lambda)方法解决。

参考资料:

机器学习视频可以在Coursera机器学习课程上观看或下载: https://class.coursera.org/ml

第十课的课件资料下载链接:
PPT   PDF

Mitchell教授的经典书籍《机器学习

李航博士《统计学习方法

机器学习中的数学(2)-线性回归,偏差、方差权衡


如转载52opencourse上的任何原创文章,请注明出处,谢谢!

Coursera公开课笔记: 斯坦福大学机器学习第七课“正则化(Regularization)”

斯坦福大学机器学习第七课"正则化“学习笔记,本次课程主要包括4部分:

1)  The Problem of Overfitting(过拟合问题)

2)  Cost Function(成本函数)

3)  Regularized Linear Regression(线性回归的正则化)

4)  Regularized Logistic Regression(逻辑回归的正则化)

以下是每一部分的详细解读。

1)  The Problem of Overfitting(过拟合问题)

拟合问题举例-线性回归之房价问题:

a) 欠拟合(underfit, 也称High-bias)

欠拟合-我爱公开课-52opencourse.com

b) 合适的拟合:

拟合问题-我爱公开课-52opencourse.com

c) 过拟合(overfit,也称High variance)

过拟合-我爱公开课-52opencourse.com

什么是过拟合(Overfitting):

如果我们有非常多的特征,那么所学的Hypothesis有可能对训练集拟合的非常好(J(\theta) = \frac{1}{m}\sum_{i=1}^m{\frac{1}{2}(h_\theta(x^{(i)}) - y^{(i)})^2} \approx 0),但是对于新数据预测的很差。

过拟合例子2-逻辑回归:

与上一个例子相似,依次是欠拟合,合适的拟合以及过拟合:

a) 欠拟合

逻辑回归欠拟合-我爱公开课-52opencourse.com

b) 合适的拟合

逻辑回归合适的拟合-我爱公开课-52opencourse.com

c) 过拟合

逻辑回归过拟合-我爱公开课-52opencourse.com

如何解决过拟合问题:

首先,过拟合问题往往源自过多的特征,例如房价问题,如果我们定义了如下的特征:

特征选择-我爱公开课-52opencourse.com

那么对于训练集,拟合的会非常完美:

房价问题过拟合-我爱公开课-52opencourse.com

所以针对过拟合问题,通常会考虑两种途径来解决:

a) 减少特征的数量:

-人工的选择保留哪些特征;

-模型选择算法(之后的课程会介绍)

b) 正则化

-保留所有的特征,但是降低参数\theta_j的量/值;

-正则化的好处是当特征很多时,每一个特征都会对预测y贡献一份合适的力量;

2)  Cost Function(成本函数)

依然从房价预测问题开始,这次采用的是多项式回归:

a) 合适的拟合:

多项式回归正则化-我爱公开课-52opencourse.com

b) 过拟合

多项式回归过拟合-我爱公开课-52opencourse.com

直观来看,如果我们想解决这个例子中的过拟合问题,最好能将x^3, x^4的影响消除,也就是让\theta_3 \approx 0, \theta_4 \approx 0.

假设我们对\theta_3, \theta_4进行惩罚,并且令其很小,一个简单的办法就是给原有的Cost function加上两个略大惩罚项,例如:

成本函数-我爱公开课-52opencourse.com

这样在最小化Cost function的时候,\theta_3 \approx 0, \theta_4 \approx 0.

正则化:

参数\theta_0, \theta_1, ..., \theta_n取小一点的值,这样的优点:

-“简化”的hypothesis;

-不容易过拟合;

对于房价问题:

-特征包括:x_1, x_2, ... , x_{100}

-参数包括:\theta_0, \theta_1, ..., \theta_n

我们对除\theta_0以为的参数进行惩罚,也就是正则化:

对cost function进行正则化-我爱公开课-52opencourse.com

正式的定义-经过正则化的Cost Function有如下的形式:

正则化正式的定义-我爱公开课-52opencourse.com

其中\lambda称为正则化参数,我们的目标依然是最小化J(\theta): min_{\theta} J(\theta)

例如,对于正则化的线性回归模型来说,我们选择\theta来最小化如下的正则化成本函数:
正则化的线性回归模型—我爱公开课-52opencourse.com

如果将 \lambda 设置为一个极大的值(例如对于我们的问题,设 \lambda = 10^{10})? 那么

-算法依然会正常的工作, 将 \lambda设置的很大不会影响算法本身;

-算法在去除过拟合问题上会失败;

-算法的结构将是欠拟合(underfitting),即使训练数据非常好也会失败;

-梯度下降算法不一定会收敛;

这样的话,除了\theta_0,其他的参数都约等于0, h_{\theta}(x) = \theta_0, 将得到类似如下的欠拟合图形:

欠拟合线性回归-我爱公开课——52opencourse.com

关于正则化,以下引自李航博士《统计学习方法》1.5节关于正则化的一些描述:

模型选择的典型方法是正则化。正则化是结构风险最小化策略的实现,是在经验风险上加一个正则化项(regularizer)或罚项(penalty term)。正则化项一般是模型复杂度的单调递增函数,模型越复杂,正则化值就越大。比如,正则化项可以是模型参数向量的范数。

正则化符合奥卡姆剃刀(Occam's razor)原理。奥卡姆剃刀原理应用于模型选择时变为以下想法:在所有可能选择的模型中,能够很好地解释已知数据并且十分简单才是最好的模型,也就是应该选择的模型。从贝叶斯估计的角度来看,正则化项对应于模型的先验概率。可以假设复杂的模型有较大的先验概率,简单的模型有较小的先验概率。

3)  Regularized Linear Regression(线性回归的正则化)

线性回归包括成本函数,梯度下降算法及正规方程解法等几个部分,不清楚的读者可以回顾第二课第四课的笔记,这里将分别介绍正则化后的线性回归的成本函数,梯度下降算法及正规方程等。

首先来看一下线性回归正则化后的Cost function:

线性回归正则化Cost function-我爱公开课-52opencourse.com

我们的目标依然是最小化J(\theta),从而得到相应的参数\theta. 梯度下降算法是其中的一种优化算法,由于正则化后的线性回归Cost function有了改变,因此梯度下降算法也需要相应的改变:

正则化线性回归梯度下降算法-我爱公开课-52opencourse.com

注意,对于参数\theta,梯度下降算法需要区分\theta_0\theta_1, \theta_2, ... ,\theta_n

同样的正规方程的表达式也需要改变,对于

X 是m * (n+1)矩阵

正规方程-我爱公开课——52opencourse.com

y是m维向量:

正规方程表达式-我爱公开课-52opencourse.com

正则化后的线性回归的Normal Equation的公式为:

线性回归正则化Normal Equation-我爱公开课-52opencourse.com

假设样本数m小于等于特征数x, 如果没有正则化,线性回归Normal eqation如下:

\theta = (X^T X)^{-1}X^T y

如果X^T X不可逆怎么办?之前的办法是删掉一些冗余的特征,但是线性回归正则化后,如果\lambda > 0,之前的公式依然有效:

不可逆后的正规方程-我爱公开课-52opencourse.com

其中括号中的矩阵可逆。

4)  Regularized Logistic Regression(逻辑回归的正则化)

和线性回归相似,逻辑回归的Cost Function也需要加上一个正则化项(惩罚项),梯度下降算法也需要区别对待参数\theta).</p>
<p>??????????????????????????</p>
<p><img src=

??Hypothesis?????

????????-?????-52opencourse.com

?????????Cost Function???

???????Cost Function-?????-52opencourse.com

?????????

?????????????-?????-52opencourse.com

??" />h_\theta(x) = \frac{1}{1+e^{-\theta^Tx}}$$.

参考资料:

第七课“正则化”的课件资料下载链接,视频可以在Coursera机器学习课程上观看或下载: https://class.coursera.org/ml
PPT   PDF

李航博士《统计学习方法

http://en.wikipedia.org/wiki/Regularization_%28mathematics%29

http://en.wikipedia.org/wiki/Overfitting

如转载52opencourse上的任何原创文章,请务必注明出处,谢谢!欢迎大家在这里讨论和学习!