标签归档:马尔科夫链

PRML读书会第十三章 Sequential Data

Deep Learning Specialization on Coursera

PRML读书会第十三章 Sequential Data

主讲人 张巍

(新浪微博: @张巍_ISCAS

软件所-张巍<zh3f@qq.com> 19:01:27
我们开始吧,十三章是关于序列数据,现实中很多数据是有前后关系的,例如语音或者DNA序列,例子就不多举了,对于这类数据我们很自然会想到用马尔科夫链来建模:

例如直接假设观测数据之间服从一阶马尔科夫链,这个假设显然太简单了,因为很多数据时明显有高阶相关性的,一个解决方法是用高阶马尔科夫链建模:

但这样并不能完全解决问题 :1、高阶马尔科夫模型参数太多;2、数据间的相关性仍然受阶数限制。一个好的解决方法,是引入一层隐变量,建立如下的模型:

继续阅读