标签归档:AINLP

藏头诗生成器有了,藏尾诗生成器还会远吗?

自从AINLP公众号后台对话上线自动写诗功能,特别是藏头诗生成器的功能后,发现有不少同学在使用,特别是过程中发现有的同学不仅需要藏头诗,还需要藏尾诗,这也让我第一次了解了藏尾诗。不过如果让用户随意输入尾词,诗句尾部的押韵基本上破坏了,但是作为大众娱乐需求,这功能还是可以有的。所能想到的第一个方法是:基于目前的模型强制在结尾处替换关键字,然后逐句生成,但是这种方法合成的藏尾诗必定会很生硬;第二个方法直接训练一个反向模型:基于GPT2-Chinese,用之前的古诗训练语料逆序训练了一个古诗反向生成模型,然后对于用户的输入,同样也反向处理,最后再正向呈现给用户,这种方法生成的藏尾诗应该会平滑很多。所以说干就干,基于第二种方法训练了一个藏尾诗生成器模型,感兴趣的同学可以关注AINLP公众号,直接回复“藏尾诗输入内容”触发“藏尾诗生成器”,例如:

除了藏尾诗生成器,我还衍生了一个“写尾诗”的功能,就是输入几个字,这几个字一定要出现在古诗的尾部,关注AINLP公众号,回复“写尾诗输入内容”触发:

关于机器自动写诗,我们已经谈到多次,请参考:
AINLP公众号自动作诗上线
用GPT-2自动写诗,从五言绝句开始
鼠年春节,用GPT-2自动写对联和对对联
自动作诗机&藏头诗生成器:五言、七言、绝句、律诗全了

中文命名实体识别工具(NER)哪家强?

自去年以来,在AINLP公众号上陆续给大家提供了自然语言处理相关的基础工具的在线测试接口,使用很简单,关注AINLP公众号,后台对话关键词触发测试,例如输入 “中文分词 我爱自然语言处理”,“词性标注 我爱NLP”,“情感分析 自然语言处理爱我","Stanza 52nlp" 等,具体可参考下述文章:

五款中文分词工具在线PK: Jieba, SnowNLP, PkuSeg, THULAC, HanLP
中文分词工具在线PK新增:FoolNLTK、LTP、StanfordCoreNLP
Python中文分词工具大合集:安装、使用和测试
八款中文词性标注工具使用及在线测试
百度深度学习中文词法分析工具LAC试用之旅
来,试试百度的深度学习情感分析工具
AINLP公众号新增SnowNLP情感分析模块
斯坦福大学NLP组Python深度学习自然语言处理工具Stanza试用

既然中文分词、词性标注已经有了,那下一步很自然想到的是命名实体识别(NER,Named-entity recognition)工具了,不过根据我目前了解到的情况,开源的中文命名实体工具并不多,这里主要指的是一些成熟的自然语言处理开源工具,不是github上一些学习性质的代码。目前明确有NER标记的包括斯坦福大学的NLP组的Stanza,百度的Paddle Lac,哈工大的LTP,而其他这些测试过的开源NLP基础工具,需要从词性标注结果中提取相对应的专有名词,也算是一种折中方案。

在之前这些可测的工具中,除了斯坦福大学的Stanza和CoreNLP有一套词性标记外,LTP使用的是863词性标注集,其他包括Jieba,SnowNLP,PKUSeg,Thulac,HanLP,FoolNLTK,百度Lac等基础工具的词性标注集主要是以人民日报标注语料中的北京大学词性标注集(40+tags)为蓝本:

代码 名称 帮助记忆的诠释
Ag 形语素 形容词性语素。 形容词代码为 a ,语素代码 g 前面置以 A。
a 形容词 取英语形容词 adjective 的第 1 个字母。
ad 副形词 直接作状语的形容词。 形容词代码 a 和副词代码 d 并在一起。
an 名形词 具有名词功能的形容词。 形容词代码 a 和名词代码 n 并在一起。
b 区别词 取汉字“别”的声母。
c 连词 取英语连词 conjunction 的第 1 个字母。
Dg 副语素 副词性语素。 副词代码为 d ,语素代码 g 前面置以 D。
d 副词 取 adverb 的第 2 个字母 ,因其第 1 个字母已用于形容词。
e 叹词 取英语叹词 exclamation 的第 1 个字母。
f 方位词 取汉字“方” 的声母。
g 语素 绝大多数语素都能作为合成词的“词根”,取汉字“根”的声母。 由于实际标注时 ,一定
标注其子类 ,所以从来没有用到过 g。
h 前接成分 取英语 head 的第 1 个字母。
i 成语 取英语成语 idiom 的第 1 个字母。
j 简称略语 取汉字“简”的声母。
k 后接成分
l 习用语 习用语尚未成为成语 ,有点“临时性”,取“临”的声母。
m 数词 取英语 numeral 的第 3 个字母 ,n ,u 已有他用。
Ng 名语素 名词性语素。 名词代码为 n ,语素代码 g 前面置以 N。
n 名词 取英语名词 noun 的第 1 个字母。
nr 人名 名词代码 n 和“人(ren) ”的声母并在一起。
ns 地名 名词代码 n 和处所词代码 s 并在一起。
nt 机构团体 “团”的声母为 t,名词代码 n 和 t 并在一起。
nx 非汉字串
nz 其他专名 “专”的声母的第 1 个字母为 z,名词代码 n 和 z 并在一起。
o 拟声词 取英语拟声词 onomatopoeia 的第 1 个字母。
p 介词 取英语介词 prepositional 的第 1 个字母。
q 量词 取英语 quantity 的第 1 个字母。
r 代词 取英语代词 pronoun 的第 2 个字母,因 p 已用于介词。
s 处所词 取英语 space 的第 1 个字母。
Tg 时语素 时间词性语素。时间词代码为 t,在语素的代码 g 前面置以 T。
t 时间词 取英语 time 的第 1 个字母。
u 助词 取英语助词 auxiliary 的第 2 个字母,因 a 已用于形容词。
Vg 动语素 动词性语素。动词代码为 v。在语素的代码 g 前面置以 V。
v 动词 取英语动词 verb 的第一个字母。
vd 副动词 直接作状语的动词。动词和副词的代码并在一起。
vn 名动词 指具有名词功能的动词。动词和名词的代码并在一起。
w 标点符号
x 非语素字 非语素字只是一个符号,字母 x 通常用于代表未知数、符号。
y 语气词 取汉字“语”的声母。
z 状态词 取汉字“状”的声母的前一个字母。

其中HanLp增加了更细粒度的词性标注集,具体可参考:https://www.hankcs.com/nlp/part-of-speech-tagging.html

HanLP使用的HMM词性标注模型训练自2014年人民日报切分语料,随后增加了少量98年人民日报中独有的词语。所以,HanLP词性标注集兼容《ICTPOS3.0汉语词性标记集》,并且兼容《现代汉语语料库加工规范——词语切分与词性标注》。

另外百度词法分析工具Lac使用的词性标注集中特别加了一套强相关的专名类别标签:

词性和专名类别标签集合如下表,其中词性标签24个(小写字母),专名类别标签4个(大写字母)。这里需要说明的是,人名、地名、机名和时间四个类别,在上表中存在两套标签(PER / LOC / ORG / TIME 和 nr / ns / nt / t),被标注为第二套标签的词,是模型判断为低置信度的人名、地名、机构名和时间词。开发者可以基于这两套标签,在四个类别的准确、召回之间做出自己的权衡。

哈工大LTP的命名实体标注集没有提取“时间”,具体参考如下:

https://ltp.readthedocs.io/zh_CN/latest/appendix.html

NE识别模块的标注结果采用O-S-B-I-E标注形式,其含义为

标记 含义
O 这个词不是NE
S 这个词单独构成一个NE
B 这个词为一个NE的开始
I 这个词为一个NE的中间
E 这个词位一个NE的结尾

LTP中的NE 模块识别三种NE,分别如下:

标记 含义
Nh 人名
Ni 机构名
Ns 地名

基于上述观察,我决定采用这种方案做中文命名实体工具测试接口:对于斯坦福Stanza的NER结果直接保留,对于 Baidu Lac 结果则保留强置信度的人名(PER)、地名(LOC)、机构名(ORG)、时间(TIME)提取结果,对于哈工大LTP的NER结果做个人名(Nh=>PER)、地名(Ns=>LOC)和机构名(Ni=>ORG)的映射,对于其他几个工具,去除斯坦福的老NLP工具CoreNLP,其他NLP工具则保留nr、ns、nt、t、nz这几个提取工具,并做了标记映射人名(nr=>PER),地名(ns=>LOC),机构名(nt=>ORG),时间(t=>TIME)。下面是几组测试结果,欢迎关注AINLP公众号试用,结果仅供参考,毕竟除了斯坦福Stanza、Baidu Lac以及哈工大LTP外,其他几个工具的“NER命名实体识别”功能是“强加”的,在实际使用中,可以根据需求采用:

一键收藏自然语言处理学习资源大礼包

虽然知道大多数同学都有资料收藏癖,还是给大家准备一份自然语言处理学习大礼包,其实是之前陆陆续续分享的NLP学习资源,包括自然语言处理、深度学习、机器学习、数学相关的经典课程、书籍和学习笔记,这些资料基本上都是公开渠道可以获得的,整理到一起,方便NLP爱好者收藏把玩。当然,学习的前提依然是”学自然语言处理,其实更应该学好英语“

获取方法很简单,关注AINLP公众号,后台回复关键词:ALL4NLP,一键打包收藏NLP学习资源:

这些自然语言处理相关资源列表如下,欢迎收藏:

相关的资源的过往文章大致介绍如下,不限于下述文章:

斯坦福大学自然语言处理经典入门课程-Dan Jurafsky 和 Chris Manning 教授授课

哥伦比亚大学经典自然语言处理公开课,数学之美中盛赞的柯林斯(Michael Collins)教授授课

认真推荐一份深度学习笔记:简约而不简单

Andrew Ng 老师新推的通俗人工智能课程以及其他相关资料

那些值得推荐和收藏的线性代数学习资源

Philipp Koehn大神的神经网络机器翻译学习资料:NMT Book

凸优化及无约束最优化相关资料

斯坦福大学深度学习自然语言处理课程CS224N 2019 全20个视频分享

自然语言处理经典书籍《Speech and Language Processing》第三版最新版下载(含第二版)

强化学习圣经:《强化学习导论》第二版(附PDF下载)

新书下载 | 面向机器学习的数学(Mathematics for Machine Learning)

Springer面向公众开放正版电子书籍,附65本数学、编程、数据挖掘、数据科学、数据分析、机器学习、深度学习、人工智能相关书籍链接及打包下载

最后,欢迎关注AINLP,回复"all4nlp"获取:

学自然语言处理,其实更应该学好英语

关于如何学习自然语言处理,如何入门NLP,无论在博客、微博还是AINLP公众号以及技术交流群里,遇到过一些同学提这个问题,之前开玩笑的建议过:学好英语、打好数学和计算机科学的基础,然后再了解一点语言学,这个问题就简单了。今天,刚好看到一条微博,关于“为什么要学习英语”:

姑且不论这个微博里的观点你是否赞同,但是关于英语的重要性,对于NLPer来说,对于学习自然与处理来说,无论如何强调都不为过。很多同学入门NLP第一个问题就是有哪些NLP学习资源或者路径?我一般首先推荐的都是国外的经典书籍和课程,譬如自然语言处理综论SLP3,斯坦福大学早期经典NLP课程,以及近期深度学习自然语言处理热门课程CS224n,这些资源都是NLP领域大师级人物的书籍或者授课,都是第一手的优质学习资源,你第一个需要解决的问题就是英语。有时候真的非常羡慕现在的学生朋友,你们遇到了一个好时代,现在的学习资源真的是无比丰富,你们所面临的问题不是找资源,而是如何甄选优质的学习资源,当然,前提是你得学好英语。

关于如何学习英语,说一点个人经验。中学时代,英语对我来说有点鸡肋的感觉,不太喜欢那些语法,然后又不得章法的学习英语,导致英语是托后腿的课程,高考时英语的成绩也是最低的。到了大学,我花了很长时间寻找英语学习的方法论,印象比较深刻的是逆向英语学习法,听过和跟读过不少VOA慢速英语。期间,对我来说,影响最大的是来自当时新东方某个副校长(名字忘了)的一本关于如何学习英语的小册子,里面很多内容都忘了,但是有一个观点对我来说印象很深,大意就是“纯英文环境学习英文”,有几点建议很有意思:一个就是用英文解释单词的词典,另外一个就是按从易到难的顺序阅读纯英文分级读物,还有一个就是看无字幕的英文视频。关于第一点,我买了一本很厚的柯林斯英文词典,那本词典用简单的英文单词解释单词,在之后学习的过程中,遇到不懂的英文单词就翻,帮助很大。关于第二点,我在哈工大的图书管里找到了一批英文原版分级读物,从最简单的一级开始读起,直到读到最后一级,这个过程中印象最深的就是读到了小说的感觉,头脑中会浮现出书中的场景。关于第三点,印象最深的是看无字幕的friends,看了好多遍,另外一个就是当时收藏了不少英文电影DVD,还有就是下载和观看了不少探索发现节目。这个过程中英文的阅读能力和听力逐渐培养起来了。等到读研和工作时,强迫自己看英文版教材以及论文,逐渐养成查阅英文资料的习惯,甚至尝试写英文博客,不知不觉将英语变成了工作语言。现在回头再看,其实学英语最核心的方法就是“用”,强迫自己用起来,逐渐养成习惯就可以了,“无他,唯手熟尔”。

前段时间,Springer面向公众开放数百本正版电子书籍,涵盖社会科学和自然科学领域数百本书籍,其中,包括65本数学、编程、数据挖掘、数据科学、数据分析、机器学习、深度学习、人工智能的相关书籍 可以打包下载,包括经典的《统计学习基础》,《线性代数应该这样学》这样的书籍,唯一的前提是,这些书籍都是英语。另外,你在微博、知乎、公众号看到的大多数学习资料,源头大多来自英文世界。你在B站上看到的很多经典课程,也来自国外的知名大学,例如斯坦福大学公开课,MIT的Opencourseware,以及edX, Cousera这样的Mooc平台。学好英语,你可以亲身去体验第一手学习资源。

最后,再次回到如何学习自然语言处理的问题,这是之前发布或转载在AINLP公众号的一些文章,依然不过时,你唯一需要立即行动的就是,学好英语,用好英语:

如何学习自然语言处理:一本书和一门课
如何学习自然语言处理:NLP领域经典《自然语言处理综论》英文版第三版更新
2019斯坦福CS224n深度学习自然语言处理课程视频和相关资料分享
CS224N 2019最全20视频分享:斯坦福大学深度学习自然语言处理课程资源索引
李纪为博士:初入NLP领域的一些小建议
老宋同学的学习建议和论文:听说你急缺论文大礼包?
从老宋的角度看,自然语言处理领域如何学习?
刘知远老师NLP研究入门之道:NLP推荐书目
NLP研究入门之道:自然语言处理简介
NLP研究入门之道:走近NLP学术界
NLP研究入门之道:如何通过文献掌握学术动态
NLP研究入门之道:如何写一篇合格的学术论文
NLP研究入门之道:本科生如何开始科研训练
自然语言理解难在哪儿?
好的研究想法从哪里来
你是如何了解或者进入NLP这个领域的?
NLP is hard! 自然语言处理太难了系列

最后,欢迎关注我们的B站:https://space.bilibili.com/216712081 ,会甄选一些NLP相关的经典课程资源供大家学习,目前才刚刚开始做,前提依然是你要学好英语:

自动作诗机&藏头诗生成器:五言、七言、绝句、律诗全了

这是自然语言处理里面最有意思的任务之一:自然语言生成,本文主要是指古诗自动写诗,或者自动作诗机藏头诗生成器,目前支持五言绝句、七言绝句、五言律诗、七言律诗的自动生成(给定不超过7个字的开头内容自动续写)和藏头诗生成(给定不超过8个字的内容自动合成)。先看一下效果,也算是一个简单的自动作诗机和藏头诗生成器使用指南,感兴趣的同学请关注公众号AINLP,直接关键词触发测试:

自动作诗机或者自动写诗:
输入 “写诗 起头内容” 触发古诗自动生成(自动续写),输入内容不要超过7个字,会根据字数随机生成几首五言绝句、七言绝句、五言律诗、七言律诗:

藏头诗生成器:
输入 “藏头诗 藏头内容” 触发藏头诗自动生成,输入内容不超过8个字,会根据字数随机生成绝句或者律诗:

五言诗生成器:
输入“五言 起头内容” 触发五言诗自动生成,输入内容不要超过5个字,会随机生成五言绝句或者五言律诗

七言诗生成器:
输入 “七言 起头内容” 触发七言诗自动生成,输入内容不要超过7个字,会随机生成七言绝句或者七言律诗

绝句生成器:
输入 “绝句 起头内容” 触发绝句自动生成,输入内容不要超过7个字,会根据字数随机生成五言绝句或者七言绝句

律诗生成器:
输入 “律诗 起头内容” 触发律诗自动生成,输入内容不要超过7个字,会根据字数随机生成五言律诗或者七言律诗

五言绝句生成器和五言律诗生成器:
输入 “五言绝句 起头内容” 触发五言绝句自动生成,输入 “五言律诗 起头内容” 触发五言律诗自动生成,输入内容不要超过5个字:

七言绝句生成器和七言律诗生成器:
输入 “五言绝句 起头内容” 触发五言绝句自动生成,输入 “五言律诗 起头内容” 触发五言律诗自动生成,输入内容不要超过5个字:

最后让我们再看一下藏头诗自动生成的功能,支持任意8个字以内的输入,以下是对“自然语言”, “自然语言处理”,“我爱自然语言处理”的输入测试:

关于机器自动写诗,我们已经谈到多次,请参考:
AINLP公众号自动作诗上线
用GPT-2自动写诗,从五言绝句开始
鼠年春季,用GPT-2自动写对联和对对联

目前用 GPT2-Chinese 这个工具对古诗和对联数据一起训练,设计好数据格式,单个模型可以一站式支持多种体裁古诗和对联生成,非常方便,再次安利。

关于古诗体裁介绍,以下来源于百科:

五言绝句是中国传统诗歌的一种体裁,简称五绝,是指五言四句而又合乎律诗规范的小诗,属于近体诗范畴。此体源于汉代乐府小诗,深受六朝民歌影响,成熟定型于唐代。五绝每首仅二十字,便能展现出一幅幅清新的图画,传达一种种真切的意境。因小见大,以少总多,在短章中包含着丰富的内容,是其最大特色。五绝有仄起、平起二格。代表作品有王维的《鸟鸣涧》、李白的《静夜思》、杜甫的《八阵图》、王之涣的《登鹳雀楼》、刘长卿的《送灵澈上人》等。

七言绝句是中国传统诗歌的一种体裁,简称七绝,属于近体诗范畴。此体全诗四句,每句七言,在押韵、粘对等方面有严格的格律要求。诗体起源于南朝乐府歌行或北朝乐府民歌,或可追溯到西晋的民谣,定型、成熟于唐代。代表作品有王昌龄的《芙蓉楼送辛渐二首》、李白的《早发白帝城》、杜甫的《江南逢李龟年》、厉声教的《观潮有感》等。

五言律诗,是中国传统诗歌的一种体裁,简称五律,属于近体诗范畴。此体发源于南朝齐永明时期,其雏型是沈约等讲究声律、对偶的新体诗,至初唐沈佺期、宋之问时基本定型,成熟于盛唐时期。全篇共八句,每句五个字,有仄起、平起两种基本形式,中间两联须作对仗。代表作品有李白的《送友人》、杜甫的《春望》、王维的《山居秋暝》、厉声教的《辛卯季春谒厉杭二公祠》等。

七言律诗是中国传统诗歌的一种体裁,简称七律,属于近体诗范畴,起源于南朝齐永明时沈约等讲究声律、对偶的新体诗,至初唐沈佺期、宋之问等进一步发展定型,至盛唐杜甫手中成熟。其格律严密,要求诗句字数整齐划一,由八句组成,每句七个字,每两句为一联,共四联,分首联、颔联、颈联和尾联,中间两联要求对仗。代表作品有崔颢的《黄鹤楼》、杜甫的《登高》、李商隐的《安定城楼》等。

李宏毅老师2020新课深度学习与人类语言处理正式开放上线

前两天李宏毅老师机器学习2020版刚刚上线,这么他又马不停蹄的推出了又一款良心大作:深度学习与人类语言处理 (Deep Learning for Human Language Processing),非常适合NLPer门来追!

课程主页,包含视频和其他相关资料链接,建议保存:

http://speech.ee.ntu.edu.tw/~tlkagk/courses_DLHLP20.html

看了第一节课程视频,这门课程之所以叫做深度学习与人类语言处理,而不是深度学习与自然语言处理,主要是这门课程里文字和语音的内容个占一半,另外主要关注近3年的相关技术,譬如BERT及之后的预处理模型将重点讲述,非常值得期待。我们建立了一个这门课程的学习交流群,感兴趣的同学可以添加微信AINLPer(id: ainlper) ,备注“李宏毅”进群一起交流学习。

目前这门课程已经放出了2节课程内容,分别是课程概览和语音识别第一部分,感兴趣的同学可以直接观看:

如果觉得这个还不过瘾,可以关注AINLP公众号,回复"DLHLP",获取这门课程前2节课程视频和Slides,以后会持续更新相关资料。

关于AINLP

AINLP 是一个有趣有AI的自然语言处理社区,专注于 AI、NLP、机器学习、深度学习、推荐算法等相关技术的分享,主题包括文本摘要、智能问答、聊天机器人、机器翻译、自动生成、知识图谱、预训练模型、推荐系统、计算广告、招聘信息、求职经验分享等,欢迎关注!加技术交流群请添加AINLP君微信(id:AINLP2),备注工作/研究方向+加群目的。

用 GPT-2 自动写诗,从五言绝句开始

春节前用 GPT2 训练了一个自动对联系统:鼠年春节,用 GPT-2 自动生成(写)春联和对对联 ,逻辑上来说这套NLG方法论可以应用于任何领域文本的自动生成,当然,格式越固定越好,这让我自然想到了自动写诗词,诗词的格式相对比较固定,我们之前已经有所涉及,譬如已经在AINLP公众号上上线了自动写藏头诗首字诗的功能,不过是直接复用的:"自动作诗机"上线,代码和数据都是公开的 ,另外还有一个更大的诗词数据项目可以用作自动作诗的“原料”:【Github】Chinese-poetry: 最全中华古诗词数据库,加上 GPT2-Chinese 这个项目:【Github】GPT2-Chinese:中文的GPT2训练代码 ,可以说万事俱备,只欠试用。

所以本周我们从五言绝句开始继续自然语言生成的主题,关于五言绝句,百度百科是这样说的:

五言绝句是中国传统诗歌的一种体裁,简称五绝,是指五言四句而又合乎律诗规范的小诗,属于近体诗范畴。此体源于汉代乐府小诗,深受六朝民歌影响,成熟定型于唐代。五绝每首仅二十字,便能展现出一幅幅清新的图画,传达一种种真切的意境。因小见大,以少总多,在短章中包含着丰富的内容,是其最大特色。五绝有仄起、平起二格。代表作品有王维的《鸟鸣涧》、李白的《静夜思》、杜甫的《八阵图》、王之涣的《登鹳雀楼》、刘长卿的《送灵澈上人》等。

我主要用了 Chinese-poetry 里的《全唐诗》和《全宋诗》数据 ,首先向这个项目的作者致敬:

《全唐诗》是清康熙四十四年(1705年),彭定求、沈三曾、杨中讷、汪士鋐、汪绎、俞梅、徐树本、车鼎晋、潘从律、查嗣瑮10人奉敕编校,“得诗四万八千九百余首,凡二千二百余人”, 共计900卷,目录12卷。 来自百科

《全宋诗》继唐诗的高度繁荣之后,宋诗在思想内容和艺术表现上有新的开拓和创造,出现了许多优秀作家作品,形成了许多流派,对元、明、清的诗歌发展产生了深远影响。

说明
《全唐诗》和《全宋诗》是繁体存储, 如有需要请自己转换, 但转换后的字不符合上下文。

这里需要首先通过OpenCC做了繁简转换,其次提取里面的五言绝句,最后转换为 GPT2-Chinese 的训练格式,然后就是训练和测试了,感兴趣的同学可以自己尝试,很方便,训练经验可以复用上文关于自动对联的:

1)训练数据可以按 GPT2-Chinese 训练数据的格式要求写个脚本进行转换,可以加一些标记符,这样在生成的时候可以基于这些标记符做trick;
2)训练时请将参数 min-length 设置为一个较小的数字,默认为128,由于对联数据长度比较短,按默认的设置训练后只会得到乱码,我直接设置为1;
3)根据自己GPU显存的大小调整 batch_size 和配置参数, 这里 batch_size 默认为8,训练时在1080TI的机器上会出现OOM,将其设置为4就可以完全跑通了,其他参数不用动;

自动作诗GPT2模型训练完成后,可以直接基于 GPT2-Chinese 里面的 generate.py 脚本进行测试,很方便,我基于 generate.py 和 flask-restful 写了一个 server 版本,对接到AINLP公众号后台了,感兴趣的同学可以关注AINLP公众号,直接进行测试:

关键词“写诗/作诗”触发诗歌的自动生成,例如输入“写诗春”,自动作诗模型会基于“春”进行自动续写,会给出以“春”开头的诗,给出其他的字同理,目前不能多于五个字,因为只能自动生成五言绝句:

关键词“藏头诗”触发藏头诗生成,例如输入“藏头诗春夏秋冬",基于GPT2模型叠加trick生成:

最后,欢迎关注AINLP公众号,测试自动写诗作诗和藏头诗生成器功能:

关于AINLP对话功能模块,感兴趣的同学可以参考:

腾讯词向量和相似词、相似度、词语游戏系列
相似词查询:玩转腾讯 AI Lab 中文词向量
玩转腾讯词向量:词语相似度计算和在线查询
腾讯词向量实战:通过Annoy进行索引和快速查询
玩转腾讯词向量:Game of Words(词语的加减游戏)
词向量游戏:梅西-阿根廷+葡萄牙=?
腾讯 800 万中文词向量 API Demo 搭建

NLP相关工具及在线测试(公众号对话测试)
五款中文分词工具在线PK: Jieba, SnowNLP, PkuSeg, THULAC, HanLP
中文分词工具在线PK新增:FoolNLTK、LTP、StanfordCoreNLP
Python中文分词工具大合集:安装、使用和测试
八款中文词性标注工具使用及在线测试
百度深度学习中文词法分析工具LAC试用之旅
来,试试百度的深度学习情感分析工具
AINLP公众号新增SnowNLP情感分析模块

自动对联及作诗机
风云三尺剑,花鸟一床书---对联数据集和自动对联机器人
自动对联活动获奖结果以及机器对联赏析
"自动作诗机"上线,代码和数据都是公开的
鼠年春节,用 GPT-2 自动写对联和对对联

夸夸聊天机器人及其他技能
一行Python代码实现夸夸聊天机器人
为了夸夸聊天机器人,爬了一份夸夸语料库
夸夸聊天机器人升级:从随机到准个性化
来,试试语音(识别)聊天(机器人)
来,试试成语接龙
推荐一份中文数据,来试试汉字、词语、成语、歇后语在线检索
AINLP公众号新增"狗屁不通文章生成器"接口
来,试试彩虹屁生成器

如果对AINLP公众号感兴趣,也欢迎参考我们的年度阅读清单:AINLP年度阅读收藏清单

鼠年春节,用 GPT-2 自动生成(写)春联和对对联

鼠年春节临近,来试试新的基于 GPT2-Chinese 自动对联系统:自动写对联(输入开头进行对联自动生成)和自动对对联(输入上联自动写下联)。老的自动对联功能是去年基于深度学习机器翻译模型上线的一个自动对对联的对话模块:风云三尺剑,花鸟一床书---对联数据集和自动对联机器人

这一年来,以BERT为代表的预训练模型不断推陈出新,席卷整个自然语言处理(NLP)领域,这其中NLP的难题之一自然语言生成(NLG)也得到了很大的助力,特别是去年上半年 OpenAI 的 GPT-2 的推出,非常惊艳,不过 GPT-2 的模型主要是基于英文领域的语料训练的,虽然到目前为止已经发布了含有15亿参数的完整模型,对于英文领域的自动文本生成非常有帮助,但是对于中文领域的NLG来说还是很受限。

回到中文领域,我们之前推荐过AINLP技术交流群杜则尧同学的开源项目 GPT2-Chinese:GPT2-Chinese:《【Github】GPT2-Chinese:中文的GPT2训练代码》,这个项目可以针对中文数据进行GPT-2模型的训练,可以写诗,新闻,小说,或是训练通用语言模型。所以对于自动对联生成来说,我能想到的就是基于GPT2-Chinese和对联数据训练一份对联领域的GPT2模型,用于对联自动生成:写对联和对对联。幸运的是,对联数据已经有了,依然是我们去年使用过 couplet-dataset ,特别感谢提供这份数据的同学,这份对联数据包含70多万条对联,唯一可惜的是没有横批,要是有横批,就可以造更完整的自动写对联和对对联系统了。

特别需要说明的是,这里并不是基于一个大的中文 GPT-2 模型进行特定领域 finetune 的,虽然目前已经有了大型的中文 GPT-2 预训练模型:gpt2-ml ,但是和 GPT2-Chinese 是两个体系,而 GPT2-Chinese 目前还不支持这个大模型的迁移。关于如何使用 GPT2-Chinese 进行对联数据的 GPT2 模型训练,这个项目的代码和文档都写得非常清楚,直接参考即可,如果有问题,可以查看一下issue,我遇到的问题基本上就是通过文档和issue解决的,这里提几个注意的点:

1)训练数据可以按 GPT2-Chinese 训练数据的格式要求写个脚本进行转换,可以加一些标记符,譬如开头,结尾以及上联下联之间的分隔符,这样在生成的时候可以基于这些标记符做trick;
2)训练时请将参数 min-length 设置为一个较小的数字,默认为128,由于对联数据长度比较短,按默认的设置训练后只会得到乱码,我直接设置为1;
3)根据自己GPU显存的大小调整 batch_size 和配置参数, 这里 batch_size 默认为8,训练时在1080TI的机器上会出现OOM,将其设置为4就可以完全跑通了,其他参数不用动;

对联 GPT-2 模型训练完成后,可以直接基于 GPT2-Chinese 里面的 generate.py 脚本进行测试,很方便,我基于 generate.py 和 flask-restful 写了一个 server 版本,对接到AINLP公众号后台了,感兴趣的同学可以关注AINLP公众号,直接进行测试:

关键词“写对联”触发对联自动生成,例如输入“写对联鼠年”,对联模型会基于“鼠年”进行自动续写,会给出以“鼠年”开头大概3个对联:

关键词“对对联”触发基于上联对下联,例如输入“对对联 一帆风顺年年好”,会给出大概3个候选对联:

当然你可以用“上联”触发老的对联版本进行对比:

至于两个版本的效果,欢迎多做对比,如果遇到了很棒的机器对联,也欢迎在评论里分享。最后,欢迎关注AINLP公众号,测试自动生成对联和自动对对联功能:

关于AINLP对话功能模块,感兴趣的同学可以参考:

腾讯词向量和相似词、相似度、词语游戏系列
相似词查询:玩转腾讯 AI Lab 中文词向量
玩转腾讯词向量:词语相似度计算和在线查询
腾讯词向量实战:通过Annoy进行索引和快速查询
玩转腾讯词向量:Game of Words(词语的加减游戏)
词向量游戏:梅西-阿根廷+葡萄牙=?
腾讯 800 万中文词向量 API Demo 搭建

NLP相关工具及在线测试(公众号对话测试)
五款中文分词工具在线PK: Jieba, SnowNLP, PkuSeg, THULAC, HanLP
中文分词工具在线PK新增:FoolNLTK、LTP、StanfordCoreNLP
Python中文分词工具大合集:安装、使用和测试
八款中文词性标注工具使用及在线测试
百度深度学习中文词法分析工具LAC试用之旅
来,试试百度的深度学习情感分析工具
AINLP公众号新增SnowNLP情感分析模块

自动对联及作诗机
风云三尺剑,花鸟一床书---对联数据集和自动对联机器人
自动对联活动获奖结果以及机器对联赏析
"自动作诗机"上线,代码和数据都是公开的

夸夸聊天机器人及其他技能
一行Python代码实现夸夸聊天机器人
为了夸夸聊天机器人,爬了一份夸夸语料库
夸夸聊天机器人升级:从随机到准个性化
来,试试语音(识别)聊天(机器人)
来,试试成语接龙
推荐一份中文数据,来试试汉字、词语、成语、歇后语在线检索
AINLP公众号新增"狗屁不通文章生成器"接口
来,试试彩虹屁生成器

如果对AINLP公众号感兴趣,也欢迎参考我们的年度阅读清单:AINLP年度阅读收藏清单

AINLP年度阅读收藏清单

感谢大家的支持,祝大家新年快乐!今天花了大部分时间从前往后分类整理了一下阅读清单,文末附上很多资源的关键词索引,欢迎收藏和分享。AINLP致力于做一个有趣有AI的自然语言处理社区,欢迎关注:

如何学习NLP和NLP相关资源
如何学习自然语言处理:一本书和一门课
如何学习自然语言处理:NLP领域经典《自然语言处理综论》英文版第三版更新
2019斯坦福CS224n深度学习自然语言处理课程视频和相关资料分享
CS224N 2019最全20视频分享:斯坦福大学深度学习自然语言处理课程资源索引
李纪为博士:初入NLP领域的一些小建议
老宋同学的学习建议和论文:听说你急缺论文大礼包?
从老宋的角度看,自然语言处理领域如何学习?
刘知远老师NLP研究入门之道:NLP推荐书目
NLP研究入门之道:自然语言处理简介
NLP研究入门之道:走近NLP学术界
NLP研究入门之道:如何通过文献掌握学术动态
NLP研究入门之道:如何写一篇合格的学术论文
NLP研究入门之道:本科生如何开始科研训练
自然语言理解难在哪儿?
好的研究想法从哪里来
你是如何了解或者进入NLP这个领域的?
NLP is hard! 自然语言处理太难了系列

腾讯词向量和相似词、相似度、词语游戏系列
相似词查询:玩转腾讯 AI Lab 中文词向量
玩转腾讯词向量:词语相似度计算和在线查询
腾讯词向量实战:通过Annoy进行索引和快速查询
玩转腾讯词向量:Game of Words(词语的加减游戏)
词向量游戏:梅西-阿根廷+葡萄牙=?
腾讯 800 万中文词向量 API Demo 搭建

NLP相关工具及在线测试(公众号对话测试)
五款中文分词工具在线PK: Jieba, SnowNLP, PkuSeg, THULAC, HanLP
中文分词工具在线PK新增:FoolNLTK、LTP、StanfordCoreNLP
Python中文分词工具大合集:安装、使用和测试
八款中文词性标注工具使用及在线测试
百度深度学习中文词法分析工具LAC试用之旅
来,试试百度的深度学习情感分析工具
AINLP公众号新增SnowNLP情感分析模块

自动对联及作诗机
风云三尺剑,花鸟一床书---对联数据集和自动对联机器人
自动对联活动获奖结果以及机器对联赏析
"自动作诗机"上线,代码和数据都是公开的

夸夸聊天机器人及其他技能
一行Python代码实现夸夸聊天机器人
为了夸夸聊天机器人,爬了一份夸夸语料库
夸夸聊天机器人升级:从随机到准个性化
来,试试语音(识别)聊天(机器人)
来,试试成语接龙
推荐一份中文数据,来试试汉字、词语、成语、歇后语在线检索
AINLP公众号新增"狗屁不通文章生成器"接口
来,试试彩虹屁生成器

BERT及预训练模型相关文章
BERT相关论文、文章和代码资源汇总

张俊林博士系列解读:
放弃幻想,全面拥抱Transformer:自然语言处理三大特征抽取器(CNN/RNN/TF)比较
预训练在自然语言处理的发展: 从Word Embedding到BERT模型
从Word Embedding到Bert模型—自然语言处理中的预训练技术发展史
Bert时代的创新(应用篇):Bert在NLP各领域的应用进展
效果惊人的GPT 2.0模型:它告诉了我们什么
XLNet:运行机制及和Bert的异同比较

高开远同学系列:
BERT源码分析PART I
BERT源码分析PART II
BERT源码分析PART III
站在BERT肩膀上的NLP新秀们(PART I)
站在BERT肩膀上的NLP新秀们(PART II)
站在BERT肩膀上的NLP新秀们(PART III)
Nvidia League Player:来呀比到天荒地老
Dive into BERT:语言模型与知识
当BERT遇上知识图谱
中文预训练模型ERNIE超详细使用指南

老宋的茶书会系列:
听说你还没读过 Bert 源码?
Bert 之后:预训练语言模型与自然语言生成
就最近看的paper谈谈预训练语言模型发展
Bert 改进: 如何融入知识
ALBERT 告诉了我们什么?

太子長琴同学系列:
BERT论文笔记
XLNet 论文笔记
ERNIE Tutorial(论文笔记 + 实践指南)

张贵发同学系列:
一步步理解BERT
最新语言表示方法XLNet
深度剖析知识增强语义表示模型——ERNIE

艾力亚尔同学的文章:
NLP - 基于 BERT 的中文命名实体识别(NER)
NLP - BERT/ERNIE 文本分类和部署

SunYanCN同学的文章:
详解BERT阅读理解
简单高效的Bert中文文本分类模型开发和部署

李如同学的文章:
【NLP】ALBERT粗读

其他相关:
BERT 的演进和应用
吴金龙博士的解读:BERT时代与后时代的NLP
谷歌BERT模型深度解析
BERT_Paper_Chinese_Translation: BERT论文中文翻译版
【Github】BERT-train2deploy:BERT模型从训练到部署
BERT/注意力机制/Transformer/迁移学习NLP资源大列表:awesome-bert-nlp
NLP中的词向量对比:word2vec/glove/fastText/elmo/GPT/bert
中文预训练ALBERT模型来了:小模型登顶GLUE,Base版模型小10倍速度快1倍
超小型bert横空出世:训练和预测提速10倍
RoBERTa for Chinese:大规模中文预训练RoBERTa模型
中文语言理解基准测评(chineseGLUE)来了,公开征集数据集进行中
最简单的BERT模型调用方法
【Github】BERT-NER-Pytorch:三种不同模式的BERT中文NER实验

中文分词
中文分词文章索引和分词数据资源分享
自然语言理解太难了之中文分词八级测试
中文分词工具评估:chinese-segmentation-evaluation
简单有效的多标准中文分词

命名实体识别
【论文笔记】命名实体识别论文
一文详解深度学习在命名实体识别(NER)中的应用

关系提取
关系提取简述
【论文】Awesome Relation Classification Paper(关系分类)(PART I)
【论文】Awesome Relation Classification Paper(关系分类)(PART II)
【论文】Awesome Relation Extraction Paper(关系抽取)(PART III
【论文】Awesome Relation Extraction Paper(关系抽取)(PART IV)
【论文】Awesome Relation Extraction Paper(关系抽取)(PART V)

文本分类/情感分析
几个可作为Baseline的文本分类模型
清华THUNLP多标签分类论文笔记:基于类别属性的注意力机制解决标签不均衡和标签相似问题
【论文串烧】基于特定实体的文本情感分类总结(PART I)
基于特定实体的文本情感分类总结(PART II)
基于特定实体的文本情感分类总结(PART III)
深度学习实践:从零开始做电影评论文本情感分析
5个例子,秒懂分类算法(达观数据王子豪)
NLP - 15 分钟搭建中文文本分类模型

文本摘要
真正理解指针生成网络——Summarization with Pointer-Generator Networks
抛开模型,探究文本自动摘要的本质——ACL2019 论文佳作研读系列
文本自动摘要任务的“不完全”心得总结
BottleSum——文本摘要论文系列解读

知识图谱
“原子”因果常识图谱
知识图谱存储与查询:自然语言记忆模块(NLM)
知识图谱从哪里来:实体关系抽取的现状与未来

问答系统/对话系统/聊天机器人
生成式对话seq2seq:从rnn到transformer
QA问答系统中的深度学习技术实现
从产品完整性的角度浅谈chatbot
来谈谈那些很棒的检索式Chatbots论文(一)
来谈谈那些很棒的检索式Chatbots论文(二)
Rasa介绍:对话系统、产品与技术
基于RASA的task-orient对话系统解析(一)
基于RASA的task-orient对话系统解析(二)——对话管理核心模块
基于RASA的task-orient对话系统解析(三)——基于rasa的会议室预定对话系统实例
Rasa入坑指南一:初识Rasa
Rasa 入坑指南二:基于 Rasa 构建天气查询机器人
做对话机器人的各家企业,都在关注哪些问题
从互联网爬虫、自动驾驶到对话机器人,什么是Semantic(语义)?

阅读理解
阅读理解之(bidaf)双向注意力流网络
陈丹琦博士论文翻译:神经阅读理解与超越(Neural Reading Comprehension and Beyond)

机器翻译
Philipp Koehn大神的神经网络机器翻译学习资料:NMT Book
清华大学NLP组整理的机器翻译论文阅读清单

文本生成
电脑也能写出连贯的文章吗?

推荐系统
当我们谈论“推荐系统”时在谈论什么?
推荐系统中的矩阵分解技术
受限玻尔兹曼机原理及在推荐系统中的应用
推荐系统召回四模型之:全能的FM模型
推荐系统召回四模型之二:沉重的FFM模型
推荐系统技术演进趋势:从召回到排序再到重排
【Github】深度学习在推荐系统中的应用及论文小结

论文笔记
用腻了 CRF,试试 LAN 吧?
Meta-Learning:Learning to Learn and Applications
可解释性论文阅读笔记1-Tree Regularization
使用Python复现SIGKDD2017的PAMAE算法(并行k-medoids算法)

竞赛相关
AI Challenger 2017 奇遇记
AI Challenger 2018 简记
AI Challenger 2018 文本挖掘类竞赛相关代码及解决方案汇总
AI Challenger 2018 机器翻译冠军参赛总结
AI Challenger_2018英中文本机器翻译_参赛小结
AI Challenger 2018 冠军 PPT 分享---细粒度情感分析赛道
AI Challenger 2018 冠军代码分享---细粒度情感分析赛道
AI Challenger 2018 第4名PPT分享---细粒度情感分析赛道
提供一个10分钟跑通 AI Challenger 细粒度用户评论情感分析的fastText Baseline
FlyAI算法竞赛平台初体验
法研杯要素识别第二名方案总结:多标签分类实践与效果对比
2019法研杯比赛--阅读理解任务第4名团队参赛总结
法研杯cail2019阅读理解比赛记录(第5名团队分享)
【Github】2019年达观信息提取比赛第九名代码和答辩PPT
CCF BDCI2019 金融信息负面及主体判定 冠军方案解析

求职相关
2021 校招算法岗, 劝退还是继续
EE转CS,拿了多个行业offer,最终选择NLP算法岗的同学的秋招总结
14种模式解决面试算法编程题(PART I)
14种模式解决面试算法编程题(PART II)

开源项目及资源
中文自然语言处理相关的开放任务,数据集,以及当前最佳结果
用于中文闲聊的GPT2模型:GPT2-chitchat
中文歌词生成,缺不缺语料?这里有一个开源项目值得推荐
深度学习资源大列表:关于深度学习你需要了解的一切
funNLP: 从文本中抽取结构化信息的超级资源包
NLP 2018 Highlights:2018自然语言处理技术亮点汇总
NLP Chinese Corpus项目:大规模中文自然语言处理语料
Awesome-Chinese-NLP:中文自然语言处理相关资料
Jiagu:中文深度学习自然语言处理工具
上百种预训练中文词向量:Chinese-Word-Vectors
lazynlp:构建大规模语料库的"懒人"工具箱
关于聊天机器人,这里有一份中文聊天语料库资源
复旦NLP实验室NLP上手教程
AI算法工程师手册
NLP学习新资料:旧金山大学2019夏季自然语言处理课程
中文自然语言处理数据集:ChineseNLPCorpus
【Github】nlp-journey: NLP相关代码、书目、论文、博文、算法、项目资源链接
NeuralNLP-NeuralClassifier:腾讯开源深度学习文本分类工具
【Github】Chinese-poetry: 最全中华古诗词数据库
【Github】ML-NOTE:注重数学推导的机器学习算法整理
【Github】All4NLP:自然语言处理相关资源整理
【Github】GPT2-Chinese:中文的GPT2训练代码
【Github】nlp-tutorial:TensorFlow 和 PyTorch 实现各种NLP模型
【Github】ML-NLP:机器学习、NLP面试中常考到的知识点和代码实现
【Github】Data Competition Top Solution: 数据竞赛top解决方案开源整理
【Github】nlp-roadmap:自然语言处理路相关路线图(思维导图)和关键词(知识点)
【Github】TextCluster:短文本聚类预处理模块 Short text cluster

其他相关
认真推荐一份深度学习笔记:简约而不简单
神经网络佛系炼丹手册
通过Docker部署深度学习项目环境
GPU 显存不足怎么办?
AINLP-DBC GPU 使用体验指南
200行写一个自动微分工具
定个小目标,发它一个亿条微博语料
推荐两份NLP读书笔记和一份NLTK书籍代码中文注释版
微软深度学习入门教程更新
Gilbert Strang教授的MIT公开课:数据分析、信号处理和机器学习中的矩阵方法
Python 网页爬虫 & 文本处理 & 科学计算 & 机器学习 & 数据挖掘兵器谱
如何计算两个文档的相似度一
如何计算两个文档的相似度二
如何计算两个文档的相似度三
Hands-on Machine Learning with Scikit-Learn and TensorFlow 学习笔记
感知智能到认知智能中对知识的思考
polyglot:Pipeline 多语言NLP工具
A/B测试的数学原理与深入理解
详解TensorFlow™ GPU 安装
fastText原理及实践
中国科学技术大学计算机学院课程资源:USTC-CS-Courses-Resource
那些值得推荐和收藏的线性代数学习资源

资源关键字
AINLP聊天机器人除了日常搭讪外,还负责回复用户的日常查询,所以为一些关注度比较高的文章和NLP资源做了关键字和索引,分散在以前的一些文章介绍里,这里再统一贴出来:

1、关注AINLP公众号,后台回复 “文章、历史消息、历史、history、存档” 任一关键字获取历史文章存档消息。

2、回复“正态分布,rickjin, 正态分布前世今生, 正态分布文章, 正太分布, 正太, 正态”任一关键字获取Rickjin正态分布前世今生系列:

正态分布系列文章索引

3、回复“nlp, 自然语言处理,学习自然语言处理,学习nlp, 如何学习nlp,如何学习自然语言处理” 任一关键字获取文章:如何学习自然语言处理

4、回复"slp" 获取:斯坦福NLP书籍和课程网盘链接和密码

5、回复"slp3" 获取:自然语言处理综论英文版第三版及斯坦福NLP课程链接和密码

6、回复"ng" 获取:Andrew Ng老师课程相关资料链接和密码

7、回复"aic" 获取:AI Challenger 2018 文本挖掘类竞赛相关代码及解决方案汇总
博客版本持续更新,欢迎提供线索:http://www.52nlp.cn/?p=10998

8、回复"bert" 获取:BERT相关论文、文章和代码资源汇总
博客版本持续更新:http://www.52nlp.cn/?p=10870

9、回复"HMM" 获取:HMM学习最佳范例全文PDF
HMM学习最佳范例全文PDF文档及相关文章索引

10、回复"Hinton" 获取:面向机器学习的神经网络公开课视频及课件
Geoffrey Hinton 大神面向机器学习的神经网络公开课及相关视频资料

11、回复"NLTK" 获取: NLTK相关资料
Python自然语言处理工具NLTK学习导引及相关资料

12、回复"youhua"获取:优化相关资料
凸优化及无约束最优化相关资料

13、回复"xiandai"获取:线性代数相关资料
那些值得推荐和收藏的线性代数学习资源

14、回复"cs224n"获取:深度学习自然语言处理课程最新视频:
2019斯坦福CS224n深度学习自然语言处理课程视频和相关资料分享
斯坦福大学深度学习自然语言处理课程CS224N 2019 全20个视频分享

15、回复"kuakua"获取:夸夸语料库(500条)
为了夸夸聊天机器人,爬了一份夸夸语料库

16、回复"fenci"获取:中文分词相关资源
中文分词文章索引和分词数据资源分享

17、回复”tongjixuexi”获取:李航老师统计学习方法第一版PPT(清华大学深圳研究生院袁春老师精心制作)
李航老师《统计学习方法(第二版)》出版及统计学习方法第一版PPT课件下载

18、回复"nmt"获取:Philipp Koehn大神的神经网络机器翻译学习资料:NMT Book

关于AINLP

AINLP 是一个有趣有AI的自然语言处理社区,专注于 AI、NLP、机器学习、深度学习、推荐算法等相关技术的分享,主题包括文本摘要、智能问答、聊天机器人、机器翻译、自动生成、知识图谱、预训练模型、推荐系统、计算广告、招聘信息、求职经验分享等,欢迎关注!加技术交流群请添加AINLP君微信(id:AINLP2),备注工作/研究方向+加群目的。

征稿启示| 让更多的NLPer看到你的文章

认真的给AINLP公众号征个稿,之前在AINLP技术交流群分享过,现在希望更多有技术写作习惯的同学看到。

如果你平时有写技术文章的习惯并且愿意分享给更多NLPer看到,文章已经发布或者计划发布在你个人的互联网上的任何地方,譬如独立博客、知乎专栏、Github、各类博客平台,欢迎投稿给AINLP公众号,自然语言处理、机器学习、深度学习相关即可,我们会做初步的判断是否合适。

如果OK并且授权AINLP公众号原创标志,我们愿意给予一些物质感谢,包括百元稿费(或等价书籍)+ 价值20个小时1080TI的GPU云算力(也可以使用其他机器例如2080或者2080TI算力)+知识星球"AINLP芝麻街"的嘉宾身份。

如果不授权AINLP公众号原创标志,只是希望能分享给更多的人,也同样欢迎,包括或者不限于已经发布在个人公众号的NLP相关文章,其他地方的技术文章,Github个人相关项目,欢迎自荐,我们按转载模式进行操作。

关于原创标志,这是公众号保护技术原创文章的一个很好的模式,形式上就是在作者前加个原创,例如:

关于AINLP的GPU云服务,请参考:

AINLP-DBC GPU 云服务器租用平台建立,价格足够便宜

关于AINLP芝麻街,请参考:

我们建了一个免费的知识星球:AINLP芝麻街,欢迎来玩,期待一个高质量的NLP问答社区

最后,常欢迎大家来投稿,当然,我们也非常鼓励大家进行技术写作,写作能力是程序之外非常棒的一个软技能。

关于AINLP

AINLP 是一个有趣有AI的自然语言处理社区,专注于 AI、NLP、机器学习、深度学习、推荐算法等相关技术的分享,主题包括文本摘要、智能问答、聊天机器人、机器翻译、自动生成、知识图谱、预训练模型、推荐系统、计算广告、招聘信息、求职经验分享等,欢迎关注!加技术交流群请添加AINLP君微信(id:AINLP2),备注工作/研究方向+加群目的。