标签归档:Annoy

玩转腾讯词向量:Game of Words(词语的加减游戏)

上一篇文章《腾讯词向量实战:通过Annoy进行索引和快速查询》结束后,觉得可以通过Annoy做一点有趣的事,把“词类比(Word Analogy)”操作放到线上,作为AINLP公众号聊天机器人的新技能,毕竟这是word2vec,或者词向量中很有意思的一个特性,刚好,Annoy也提供了一个基于vector进行近似最近邻查询的接口:

get_nns_by_vector(v, n, search_k=-1, include_distances=False) same but query by vector v.

英文词类比中最有名的一个例子大概就是: king - man + woman = queen, 当我把这个例子换成中文映射到腾讯的中文词向量中并且用gensim来计算,竟然能完美复现:国王 - 男人 + 女人 = 王后

In [49]: result = tc_wv_model.most_similar(positive=[u'国王', u'女人'], negative
    ...: =[u'男人'])
 
In [50]: print("%s\t%.4f" % result[0])
王后    0.7050

然后把国王换成皇帝,还能完美的将“王后”替换为“皇后”:

In [53]: result = tc_wv_model.most_similar(positive=[u'皇帝', u'女人'], negative
    ...: =[u'男人'])
 
In [54]: print("%s\t%.4f" % result[0])
皇后    0.8759

虽然知道即使在英文词向量中,完美的词类比列子也不多,另外据说换到中文词向量场景下,上述例子会失效,没想到在腾讯AI Lab这份词向量中得到完美复现,还是要赞一下的,虽然感觉这份腾讯词向量在处理词的边界上不够完美,引入了很多无关介词,但是"大力(量)出奇迹",882万的词条数,一方面有很高的词语覆盖率,另外一方面可以完美的将英文词向量空间中的"king - man + woman = queen"映射到中文词向量空间的"国王 - 男人 + 女人 = 王后",不得不感慨一下数学之美,词语之美。

在此前google的时候,据说在中文词向量场景下一个更容易出现的词类比例子是:机场-飞机+火车=火车站,这个确实可以通过gensim在腾讯词向量中得到复现:

In [60]: result = tc_wv_model.most_similar(positive=[u'机场', u'火车'], negative
    ...: =[u'飞机'])
 
In [61]: print("%s\t%.4f" % result[0])
火车站  0.7885

通过Annoy,我把这个服务做到线上,现在可以在AINLP公众号后台测试,结果看起来也还不错:“机场-飞机+火车=高铁站”:


继续阅读

Start your future on Coursera today.

腾讯词向量实战:通过Annoy进行索引和快速查询

上周《玩转腾讯词向量:词语相似度计算和在线查询》推出后,有同学提到了annoy,我其实并没有用annoy,不过对annoy很感兴趣,所以决定用annoy试一下腾讯 AI Lab 词向量

学习一个东西最直接的方法就是从官方文档走起:https://github.com/spotify/annoy , Annoy是Spotify开源的一个用于近似最近邻查询的C++/Python工具,对内存使用进行了优化,索引可以在硬盘保存或者加载:Approximate Nearest Neighbors in C++/Python optimized for memory usage and loading/saving to disk。

Annoy (Approximate Nearest Neighbors Oh Yeah) is a C++ library with Python bindings to search for points in space that are close to a given query point. It also creates large read-only file-based data structures that are mmapped into memory so that many processes may share the same data.

照着官方文档,我在自己的机器上进行了简单的测试(Ubuntu16.04, 48G内存, Python2.7, gensim 3.6.0, annoy, 1.15.2),以下是Annoy初探。

安装annoy很简单,在virtuenv虚拟环境中直接:pip install annoy,然后大概可以按着官方文档体验一下最简单的case了:

In [1]: import random
 
In [2]: from annoy import AnnoyIndex
 
# f是向量维度
In [3]: f = 20
 
In [4]: t = AnnoyIndex(f)
 
In [5]: for i in xrange(100):
   ...:     v = [random.gauss(0, 1) for z in xrange(f)]
   ...:     t.add_item(i, v)
   ...:     
 
In [6]: t.build(10)
Out[6]: True
 
In [7]: t.save('test.ann.index')
Out[7]: True
 
In [8]: print(t.get_nns_by_item(0, 10))
[0, 45, 16, 17, 61, 24, 48, 20, 29, 84]
 
# 此处测试从硬盘盘索引加载
In [10]: u = AnnoyIndex(f)
 
In [11]: u.load('test.ann.index')
Out[11]: True
 
In [12]: print(u.get_nns_by_item(0, 10))
[0, 45, 16, 17, 61, 24, 48, 20, 29, 84]

看起来还是比较方便的,那么Annoy有用吗? 非常有用,特别是做线上服务的时候,现在有很多Object2Vector, 无论这个Object是Word, Document, User, Item, Anything, 当这些对象被映射到向量空间后,能够快速实时的查找它的最近邻就非常有意义了,Annoy诞生于Spotify的Hack Week,之后被用于Sptify的音乐推荐系统,这是它的诞生背景:
继续阅读

Start your future on Coursera today.