标签归档:back propagation

PRML读书会第五章 Neural Networks

PRML读书会第五章 Neural Networks

主讲人 网神

(新浪微博:@豆角茄子麻酱凉面

网神(66707180) 18:55:06

那我们开始了啊,前面第3,4章讲了回归和分类问题,他们应用的主要限制是维度灾难问题。今天的第5章神经网络的内容:
1. 神经网络的定义
2. 训练方法:error函数,梯度下降,后向传导
3. 正则化:几种主要方法,重点讲卷积网络

书上提到的这些内容今天先不讲了,以后有时间再讲:BP在Jacobian和Hessian矩阵中求导的应用;
混合密度网络;贝叶斯解释神经网络。

首先是神经网络的定义,先看一个最简单的神经网络,只有一个神经元:

prml5-0

这个神经元是一个以x1,x2,x3和截距1为输入的运算单元,其输出是:

prml5-1

其中函数f成为"激活函数" , activation function.激活函数根据实际应用确定,经常选择sigmoid函数.如果是sigmoid函数,这个神经元的输入-输出的映射就是一个logistic回归问题。

继续阅读

Start your future on Coursera today.