标签归档:BFGS

无约束最优化五

Deep Learning Specialization on Coursera

3.2 Quasi-Newton Method
  Quasi-Newton Method每一步计算过程中仅涉及到函数值和函数梯度值计算,这样有效避免了Newton Method中涉及到的Hessian矩阵计算问题。于Newton Method不同的是Quasi-Newton Method在每点处构建一个如下的近似模型: 继续阅读

无约束最优化四

Deep Learning Specialization on Coursera

3.Quasi-Newton Method
  在第2节中我们了解了步长的概念,以及从x_k走到x_k+1点使用line search方法计算步长的方法。不过我们在那里忽略了一个重要的概念,即“方向”。从第2节,我们了解到从每一点x_k走到下一点x_k+1时,需要给出要走的“方向”,只有“方向”确定好之后,才能在此基础上应用line search方法找到对应的“步长”,因此在解决了“步长”计算问题之后,这里我们将和大家一起了解一下每一步的“方向”如何确定。本节分为2大部分,首先我们通过newton method引入方向的概念,在此基础上引入quasi-newton method。然后引入quasi-newton method中的一种重要方法BFGS method,并在BFGS method的基础上介绍用于大规模计算的LBFGS method算法,同时以此结束本节的所有内容。 继续阅读