标签归档:hmm

中文分词文章索引和分词数据资源分享

昨天在AINLP公众号上分享了乐雨泉同学的投稿文章:《分词那些事儿》,有同学留言表示"不过瘾",我想了想,其实我爱自然语言处理博客上已经积攒了不少中文分词的文章,除了基于深度学习的分词方法还没有探讨外,“古典”机器学习时代的中文分词方法都有涉及,从基于词典的中文分词(最大匹配法),到基于统计的分词方法(HMM、最大熵模型、条件随机场模型CRF),再到Mecab、NLTK中文分词,都有所涉及。回头看,这些文章最早的大概有10年了,现在看有些稚嫩,可能不适宜再放到公众号上推了,但是这里做个索引,感兴趣的同学可以在博客上阅读,基本上都是有代码可以参考的。

中文分词入门系列

rickjin老大的两篇日文翻译文档,很有帮助

其他同学在52nlp博客上分享的中文分词相关文章,感谢大家

最后关于中文分词的数据资源,多说两句,中文分词的研究时间比较长,方法比较多,从实际经验看,好的词库资源可能更重要一些,最后提供一份中文分词的相关资源,包括中文分词字标注法全文pdf文档,以及web上其他同学分享的词库资源,感兴趣的同学可以关注AINLP,回复“fenci"获取:

注:原创文章,转载请注明出处及保留链接“我爱自然语言处理”:http://www.52nlp.cn

本文链接地址:中文分词文章索引和分词数据资源分享 http://www.52nlp.cn/?p=11408

HMM学习最佳范例全文PDF文档及相关文章索引

HMM学习最佳范例系列大概翻译于10年前,是52nlp上早期访问量较高的一批文章,这里提供一个全文PDF下载,关注AINLP公众号,回复'HMM'获取网盘链接:

另外将博客上的隐马尔可夫模型相关文章做个索引,仅供参考:

HMM学习最佳范例

HMM相关文章

HMM应用

HMM相关文章索引

HMM系列文章是52nlp上访问量较高的一批文章,这里做个索引,方便大家参考。

HMM学习

  • HMM学习最佳范例一:介绍
  • HMM学习最佳范例二:生成模式
  • HMM学习最佳范例三:隐藏模式
  • HMM学习最佳范例四:隐马尔科夫模型
  • HMM学习最佳范例五:前向算法
  • HMM学习最佳范例六:维特比算法
  • HMM学习最佳范例七:前向-后向算法
  • HMM学习最佳范例八:总结
  • HMM学习最佳范例全文文档PDF百度网盘-密码f7az
  • HMM相关

  • wiki上一个比较好的HMM例子
  • 几种不同程序语言的HMM版本
  • HMM应用

  • HMM词性标注
  • HMM中文分词
  • 中文分词入门之字标注法全文文档

    将“中文分词入门之字标注法”这个系列整理成了一个PDF文档放到微盘中了,感兴趣的同学可以下载:

    微盘:中文分词入门之字标注法.pdf
    百度网盘:中文分词入门之字标注法.pdf

    如果愿意看网页,也可以从这个标签进入:字标注中文分词

    另外在上一节关于CRF中文分词的介绍中,通过CRF++训练了一个CRF中文分词模型,实际训练的时间比较长,为了方便大家测试,也把这个CRF模型上传到微盘了,感兴趣的同学可以下载:crf_model

    注:原创文章,转载请注明出处“我爱自然语言处理”:www.52nlp.cn

    本文链接地址:http://www.52nlp.cn/中文分词入门之字标注法全文文档

    中文分词入门之字标注法2

      虽然基于字标注的中文分词借鉴了词性标注的思想,但是在实践中,多数paper中的方法似乎局限于最大熵模型和条件随机场的应用,所以我常常疑惑字标注中文分词方法为什么不采用别的模型和方法呢?莫非是由于其诞生之初就采用了最大熵模型的缘故。但是,在词性标注中,Citar实现的是TnT中所采用的HMM trigram方法,其所宣称的性能是不亚于最大熵模型等词性标注器的。基于这样的前提,本文就验证一下基于Citar实现的HMM trigram字标注中文分词器的性能。 继续阅读

    中文分词入门之字标注法1

      在《自然语言处理领域的两种创新观念》中,张俊林博士谈了两种创新模式:一种创新是研究模式的颠覆,另外一种创新是应用创新,前者需要NLP领域出现爱因斯坦式的革新人物,后者则是强调用同样的核心技术做不一样的应用。 继续阅读

    “我爱自然语言处理”一周岁

      “我爱自然语言处理”一周岁——依然谢谢所有关心52nlp的读者!
      这一年来,有11284位读者在这里或长或短的参观过;有24511次访问数;有89828的综合浏览量;有平均6分09秒的网站停留时间;有167篇文章;有186条读者评论;有稳定的Google;也有变化无常的百度。
      这一年来,做的最成功的系列是关于隐马尔科夫模型的介绍文章《HMM学习最佳范例》,而最开心的则莫过于订阅读者数的节节攀升了。
      欢迎大家继续关注52nlp,我也会继续写一些与自然语言处理相关的文章放在这里,也非常欢迎有兴趣的nlpers加入! 继续阅读

    HMM在自然语言处理中的应用一:词性标注6

      有一段时间没有谈HMM和词性标注了,今天我们继续这个系列的最后一个部分:介绍一个开源的HMM词性标注工具并且利用Brown语料库构造一个英文词性标注器。
      上一节借用umdhmm构造的HMM词性标注工具是二元语法(bigram)标注器,因为我们只考虑了前一个词性标记和当前词性标记,算的上是最基本的马尔科夫模型标注器。这个HMM词性标注器可以通过好几种方式进行扩展,一种方式就是考虑更多的上下文,不只考虑前面一个词性标记,而是考虑前面两个词性标记,这样的标注器称之为三元语法(trigram)标注器,是非常经典的一种词性标注方法,在《自然语言处理综论》及《统计自然语言处理基础》中被拿来介绍。 继续阅读

    HMM在自然语言处理中的应用一:词性标注5

      上一节我们谈完了Resnik教授基于UMDHMM设计的词性标注的练习,不过自始至终,还没有见到一个词性标记的影子。虽然这一过程展示了自然语言处理中EM算法在无监督学习任务中的重要作用,但是这类方法的标注准确性还相对较低,在实际应用中多是那些建立在有词性标注训练集基础上的机器学习算法,如最大熵模型、决策树等,所学习的词性标注器能获得较高的标注准确率。本节我们就以一个标注好的训练集为基础,来学习一个最简单的HMM词性标注器。 继续阅读

    HMM在自然语言处理中的应用一:词性标注4

      在继续昨晚的工作之前,先聊两句Philip Resnik教授。作为美国马里兰大学的教授,他的主要研究领域是自然语言处理,不过最近他被美国某个网站评为“当代卫生保健领域最具创新性和最有影响力的百位革新者之一(the most creative and influential innovators working in healthcare today)" ,Resnik教授也非常吃惊(Much to my surprise),之所以入选,再于他利用自然语言处理来提高医用编码(medical coding)的水平,具体什么是医用编码我不太清楚,不过这项工作至少说明自然语言处理还是有相当的应用前景的。 继续阅读