标签归档:IBM

Coursera上数据科学相关课程(公开课)汇总推荐

Deep Learning Specialization on Coursera

Coursera上的数据科学课程有很多,这里汇总一批。

1、 Introduction to Data Science Specialization

IBM公司推出的数据科学导论专项课程系列(Introduction to Data Science Specialization),这个系列包括4门子课程,涵盖数据科学简介,面向数据科学的开源工具,数据科学方法论,SQL基础,感兴趣的同学可以关注:Launch your career in Data Science。Data Science skills to prepare for a career or further advanced learning in Data Science.

1) What is Data Science?
2) Open Source tools for Data Science
3) Data Science Methodology
4) Databases and SQL for Data Science

2、Applied Data Science Specialization

IBM公司推出的 应用数据科学专项课程系列(Applied Data Science Specialization),这个系列包括4门子课程,涵盖面向数据科学的Python,Python数据可视化,Python数据分析,数据科学应用毕业项目,感兴趣的同学可以关注:Get hands-on skills for a Career in Data Science。Learn Python, analyze and visualize data. Apply your skills to data science and machine learning.

1) Python for Data Science
2) Data Visualization with Python
3) Data Analysis with Python
4) Applied Data Science Capstone

3、Applied Data Science with Python Specialization

密歇根大学的Python数据科学应用专项课程系列(Applied Data Science with Python),这个系列的目标主要是通过Python编程语言介绍数据科学的相关领域,包括应用统计学,机器学习,信息可视化,文本分析和社交网络分析等知识,并结合一些流行的Python工具包进行讲授,例如pandas, matplotlib, scikit-learn, nltk以及networkx等Python工具。感兴趣的同学可以关注:Gain new insights into your data-Learn to apply data science methods and techniques, and acquire analysis skills.

1) Introduction to Data Science in Python
2) Applied Plotting, Charting & Data Representation in Python
3) Applied Machine Learning in Python
4) Applied Text Mining in Python
5) Applied Social Network Analysis in Python

4、Data Science Specialization

约翰霍普金斯大学的数据科学专项课程系列(Data Science Specialization),这个系列课程有10门子课程,包括数据科学家的工具箱,R语言编程,数据清洗和获取,数据分析初探,可重复研究,统计推断,回归模型,机器学习实践,数据产品开发,数据科学毕业项目,感兴趣的同学可以关注: Launch Your Career in Data Science-A nine-course introduction to data science, developed and taught by leading professors.

1) The Data Scientist’s Toolbox
2) R Programming
3) Getting and Cleaning Data
4) Exploratory Data Analysis
5) Reproducible Research
6) Statistical Inference
7) Regression Models
8) Practical Machine Learning
9) Developing Data Products
10) Data Science Capstone

5、Data Science at Scale Specialization

华盛顿大学的大规模数据科学专项课程系列(Data Science at Scale ),这个系列包括3门子课程和1个毕业项目课程,包括大规模数据系统和算法,数据分析模型与方法,数据科学结果分析等,感兴趣的同学可以关注: Tackle Real Data Challenges-Master computational, statistical, and informational data science in three courses.

1) Data Manipulation at Scale: Systems and Algorithms
2) Practical Predictive Analytics: Models and Methods
3) Communicating Data Science Results
4) Data Science at Scale – Capstone Project

6、Advanced Data Science with IBM Specialization

IBM公司推出的高级数据科学专项课程系列(Advanced Data Science with IBM Specialization),这个系列包括4门子课程,涵盖数据科学基础,高级机器学习和信号处理,结合深度学习的人工智能应用等,感兴趣的同学可以关注:Expert in DataScience, Machine Learning and AI。Become an IBM-approved Expert in Data Science, Machine Learning and Artificial Intelligence.

1) Fundamentals of Scalable Data Science
2) Advanced Machine Learning and Signal Processing
3) Applied AI with DeepLearning
4) Advanced Data Science Capstone

7、Data Mining Specialization

伊利诺伊大学香槟分校的数据挖掘专项课程系列(Data Mining Specialization),这个系列包含5门子课程和1个毕业项目课程,涵盖数据可视化,信息检索,文本挖掘与分析,模式发现和聚类分析等,感兴趣的同学可以关注:Data Mining Specialization-Analyze Text, Discover Patterns, Visualize Data. Solve real-world data mining challenges.

1) Data Visualization
2) Text Retrieval and Search Engines
3) Text Mining and Analytics
4) Pattern Discovery in Data Mining
5) Cluster Analysis in Data Mining
6) Data Mining Project

8、Data Analysis and Interpretation Specialization

数据分析和解读专项课程系列(Data Analysis and Interpretation Specialization),该系列包括5门子课程,分别是数据管理和可视化,数据分析工具,回归模型,机器学习,毕业项目,感兴趣的同学可以关注:Learn Data Science Fundamentals-Drive real world impact with a four-course introduction to data science.

1) Data Management and Visualization
2) Data Analysis Tools
3) Regression Modeling in Practice
4) Machine Learning for Data Analysis
5) Data Analysis and Interpretation Capstone

9、Executive Data Science Specialization

可管理的数据科学专项课程系列(Executive Data Science Specialization),这个系列包含4门子课程和1门毕业项目课程,涵盖数据科学速成,数据科学小组建设,数据分析管理,现实生活中的数据科学等,感兴趣的同学可以关注:Be The Leader Your Data Team Needs-Learn to lead a data science team that generates first-rate analyses in four courses.

1)A Crash Course in Data Science
2)Building a Data Science Team
3)Managing Data Analysis
4)Data Science in Real Life
5)Executive Data Science Capstone

10、其他相关的数据科学课程

1) Data Science Math Skills
2) Data Science Ethics
3) How to Win a Data Science Competition: Learn from Top Kagglers

注:本文首发“课程图谱博客”:http://blog.coursegraph.com

同步发布到这里, 本本文链接地址:http://blog.coursegraph.com/coursera上数据科学相关课程数据科学公开课汇总推荐 http://blog.coursegraph.com/?p=851

立委科普:问答系统的前生今世

Deep Learning Specialization on Coursera

李维老师的文章看起来就是过瘾,这篇文章也是刚刚在科学网上看到的,还有下一篇,感兴趣的读者可以继续关注。前段时间IBM超级计算机沃森(Watson)刚刚出了一把风头,也让关注自然语言处理的读者更关注起自动问答系统了,李维老师的这篇博文无疑让我们对于问答系统的前世今生又有了一次深刻的了解,所以厚着脸皮,以下继续全文转载自李维老师的博文:立委科普:问答系统的前生今世

上周信笔涂鸦写了个不伦不类的科普(【立委科普:从产业角度说说NLP这个行当】),写完自我感觉尚可,于是毛遂自荐要求加精:“自顶一哈:不用谦虚,这个应该加精。也不枉我费了大半天的时辰。” 本来是玩笑话,没成想科网的编辑MM在两小时内就真地加精上首页了。前几周还在抱怨,怕被编辑打入另册,正琢磨献花还是金币以求青睐,没想到这么快就峰回路转,春暖花开。响鼓不用重敲,原来还是要发奋码字才行,花言巧语的不行。得,一鼓作气,再码两篇。

言归正传,第一篇先介绍一下问答系统(Question Answering system)的来龙去脉。第二篇专事讲解问答系统中的三大难题 What,How 与 Why。

一 前生

传统的问答系统是人工智能(AI: Artificial Intelligence)领域的一个应用,通常局限于一个非常狭窄专门的领域,基本上是由人工编制的知识库加上一个自然语言接口而成。由于领域狭窄,词汇总量很有限,其语言和语用的歧义问题可以得到有效的控制。问题是可以预测的,甚至是封闭的集合,合成相应的答案自然有律可循。著名的项目有上个世纪60 年代研制的LUNAR系统,专事回答有关阿波罗登月返回的月球岩石样本的地质分析问题。SHRDLE 是另一个基于人工智能的专家系统,模拟的是机器人在玩具积木世界中的操作,机器人可以回答这个玩具世界的几何状态的问题,并听从语言指令进行合法操作。这些早期的AI探索看上去很精巧,揭示了一个有如科学幻想的童话世界,启发人的想象力和好奇心,但是本质上这些都是局限于实验室的玩具系统(toy systems),完全没有实用的可能和产业价值。随着作为领域的人工智能之路越走越窄(部分专家系统虽然达到了实用,基于常识和知识推理的系统则举步维艰),寄生其上的问答系统也基本无疾而终。倒是有一些机器与人的对话交互系统 (chatterbots)一路发展下来至今,成为孩子们的网上玩具(我的女儿就很喜欢上网找机器人对话,有时故意问一些刁钻古怪的问题,程序应答对路的时候,就夸奖它一句,但更多的时候是看着机器人出丑而哈哈大笑。不过,我个人相信这个路子还大有潜力可挖,把语言学与心理学知识交融,应该可以编制出质量不错的机器人心理治疗师。其实在当今的高节奏高竞争的时代,很多人面对压力需要舒缓,很多时候只是需要一个忠实的倾听者,这样的系统可以帮助满足这个社会需求。要紧的是要消除使用者 “对牛弹琴”的先入为主的偏见,或者设法巧妙隐瞒机器人的身份,使得对话可以敞开心扉。扯远了,打住。)
继续阅读

自然语言处理对于IBM超级计算机沃森(Watson)意味着什么?

Deep Learning Specialization on Coursera

  这几天估计很多人都在关注IBM超级计算机沃森(Watson)在美国最受欢迎的智力竞猜电视节目《危险边缘》中的表现,而在经历了三天的比赛后,沃森终于击败了该节目历史上两位最成功的选手肯-詹宁斯和布拉德-鲁特,成为《危险边缘》节目新的王者:IBM超级计算机在智力问答比赛中击败人类。与这场“人机大战”相关的信息中,几乎都会提及“自然语言处理”,毕竟沃森首先需要突破的就是能“理解人类的语言”,这当然是“自然语言处理”的份内之事。而在我看来,IBM沃森看起来更像一个超级的“自动问答”系统,当然,沃森背后凝聚的岂止是“自动问答”,它是一个包含了海量数据处理,机器学习,信息提取,文本分析,知识推理,自动问答等众多技术的的超级“人工智能”结合体。
  下午在看到这个消息时,我有一个很强烈的念头,要写一篇“IBM超级计算机沃森(Watson)背后的自然语言处理技术”,当然,即使写出来,也只能是一个旁观者的角度,需要一定的素材去挖掘。不过刚好有一篇相关的新闻给了我一些启示“IBM宣布八所大学参与沃森计算机系统的开发”:

“我们很高兴与这些在其各自领域表现优异的大学和专家们进行合作,他们可帮助推动作为 IBM沃森系统的支柱的问答技术的进步”,IBM沃森项目组负责人 David Ferrucci 博士表示,“《危险边缘》Jeopardy! 挑战的成功将突破与计算技术的处理和理解人类语言的能力有关的障碍,并将对科学、技术和商业带来深远的影响。”

  这篇文章下面对于每所大学的贡献都给与了简要的描述,通读下来,会发现“自然语言处理”技术在其中扮演着重要的角色。特别是麻省理工学院:

来自麻省理工学院,由计算机科学及人工智能实验室首席研究科学家 Boris Katz 带领的一个研究团队开创了一个名为 START 的在线自然语言问题回答系统,该系统能够使用来自半结构化和结构化信息存储库的信息来非常准确地回答问题。对沃森系统的根本贡献是将问题细分成简单的子问题,以便迅速收集相关回答,然后将这些回答汇合起来形成最终答案的能力。沃森系统的架构还利用了由麻省理工学院开创的对象-属性-值数据模型,该模型支持对半结构化数据源中的信息进行有效的检索,以回答自然语言问题。

  这里面提到的自然语言问答系统START很有意思,有兴趣的读者可以试着问两个问题看看:”What is start" and "How old are you"! 继续阅读

MapReduce与自然语言处理

Deep Learning Specialization on Coursera

  我接触MapReduce时间不长,属于初学者的级别,本没有资格在这里谈“MapReduce与自然语言处理”的,不过这两天刚好看了IBM developerWorks上的《用 MapReduce 解决与云计算相关的 Big Data 问题》,觉得这篇文章有两大好处:第一,它有意或无意的给了读者不仅有价值而且有脉络的关于MapReduce的参考资料;第二,虽然文中没有直接谈“自然语言处理”,但是在最后的“下一步”引申中,它给关注MapReduce在文本处理的读者列出了一份与自然语言处理相关的参考资料,这些资料,相当的有价值。因此对于“MapReduce或者并行算法与自然语言处理”,结合这篇文章以及自己的一点点经验,我尝试在这里“抛砖引玉”一把,当然,仅仅是抛砖引玉。
  MapReduce是Google定义的一套并行程序设计模式(parallel programming paradigm),由两名Google的研究员Jeffrey DeanSanjay Ghemawat在2004年时提出,二人目前均为Google Fellow。所以两位Google研究员当年的论文是MapReudce学习者的必读:

'Google 工程师发表的文章 "MapReduce: Simplified Data Processing on Large Clusters" 清楚地解释了 MapReduce 的工作方式。这篇文章导致的结果是,从 2004 年到现在出现了许多开放源码的 MapReduce 实现。'

  同时在Google Labs上,有这篇文章的摘要和HTML Slides

MapReduce is a programming model and an associated implementation for processing and generating large data sets. Users specify a map function that processes a key/value pair to generate a set of intermediate key/value pairs, and a reduce function that merges all intermediate values associated with the same intermediate key. Many real world tasks are expressible in this model, as shown in the paper.

继续阅读

SMT经典再回首之Brown90:强大的作者阵容

Deep Learning Specialization on Coursera

  上次说到Brown当时是工作在IBM语音识别实验室的,我们还是先看看Google吴军“数学之美”系列中是如何介绍当时IBM华生实验室语音识别小组的,在“贾里尼克的故事和现代语言处理”中这样描述: 继续阅读

SMT经典再回首之Brown90:远见卓识

Deep Learning Specialization on Coursera

  最近在做毕业论文,又回头仔细阅读统计机器翻译(SMT)的相关论文。重读经典的过程发现了一些当初读的时候根本无法体会的东西,于是计划写一些心得感受,啰嗦之处,请读者见谅。本周计划写三篇关于Bown90的系列文章:远见卓识,统计机器翻译与语音识别,强大的作者阵容。 继续阅读