标签归档:Philip Resnik

自然语言处理与医疗健康

  自然语言处理与医疗健康看起来似乎不搭边,不过如果读者还记着《HMM在自然语言处理中的应用一:词性标注4》中的Philip Resnik教授的话——他利用自然语言处理来提高医用编码(medical coding)的水平——大概也不会太吃惊。而今天看到和讯科技的一则新闻:《多领域IT技术研究推动改善数字健康与医疗》,讲的是“2010微软亚洲研究院数字健康与医疗研讨会”,文中提到了与数字医疗健康相关的领域,其中就包括自然语言处理: 继续阅读

HMM在自然语言处理中的应用一:词性标注5

  上一节我们谈完了Resnik教授基于UMDHMM设计的词性标注的练习,不过自始至终,还没有见到一个词性标记的影子。虽然这一过程展示了自然语言处理中EM算法在无监督学习任务中的重要作用,但是这类方法的标注准确性还相对较低,在实际应用中多是那些建立在有词性标注训练集基础上的机器学习算法,如最大熵模型、决策树等,所学习的词性标注器能获得较高的标注准确率。本节我们就以一个标注好的训练集为基础,来学习一个最简单的HMM词性标注器。 继续阅读

“眼泪”与“门外汉”——向自然语言处理的大牛们学习

  不知道今年的什么时候,机器翻译领域的骑士Kevin Knight教授为自然语言处理研究者写了一篇关于贝叶斯推理的指南性文章“Bayesian Inference with Tears: a tutorial workbook for natural language researchers”,我大概一个月以前翻阅他的个人主页时看到了,粗略的阅读了一遍,印象深刻的是他提到EM算法的时候把写作“A Statistical MT Tutorial Workbook”的缘由交代了一段话,这段话我在《统计机器翻译文献阅读指南》中也作了引用。 继续阅读

HMM在自然语言处理中的应用一:词性标注4

  在继续昨晚的工作之前,先聊两句Philip Resnik教授。作为美国马里兰大学的教授,他的主要研究领域是自然语言处理,不过最近他被美国某个网站评为“当代卫生保健领域最具创新性和最有影响力的百位革新者之一(the most creative and influential innovators working in healthcare today)" ,Resnik教授也非常吃惊(Much to my surprise),之所以入选,再于他利用自然语言处理来提高医用编码(medical coding)的水平,具体什么是医用编码我不太清楚,不过这项工作至少说明自然语言处理还是有相当的应用前景的。 继续阅读

HMM在自然语言处理中的应用一:词性标注3

  原计划这一节讲解如何利用UMDHMM这个HMM工具包来实现一个toy版本的HMM词性标注器,自己也写了几个相关的小脚本,不过由于处理过程中需要借用Philip Resnik教授写的另外几个小脚本,所以这里先介绍一下他的工作。 继续阅读