标签归档:SLP3

斯坦福大学自然语言处理经典入门课程-Dan Jurafsky 和 Chris Manning 教授授课

AINLP

这门课程录制于深度学习爆发前夕,授课是斯坦福教授 Dan JurafskyChristopher Manning 教授,两位都是自然语言处理领域的神牛:前者写了《Speech and Language Processing》(中文译名:自然语言处理综论),目前第三版SLP3还在更新中;后者写了《Foundations of Statistical Natural Language Processing》(中文译名:统计自然语言处理)和《Introduction to Information Retrieval》(中文译名:信息检索导论),这几本书几乎是NLPer的必读书。这门课程适合NLP入门学习,可以了解基本的自然语言处理任务和早期经典的处理方法,以及和信息检索相关的一些方法。我把这门课程整理了一下按章节放在了B站,感兴趣的同学可以关注。

斯坦福自然语言处理经典入门课程-第一讲课程介绍及第二讲正则表达式

https://www.bilibili.com/video/av95374756/

斯坦福自然语言处理经典入门课程-第三讲编辑距离

https://www.bilibili.com/video/av95620839/

斯坦福自然语言处理经典入门课程-第四讲语言模型

https://www.bilibili.com/video/av95688853/

斯坦福自然语言处理经典入门课程-第五讲拼写纠错

https://www.bilibili.com/video/av95689471/

斯坦福自然语言处理经典入门课程-第六讲文本分类

https://www.bilibili.com/video/av95944973/

斯坦福自然语言处理经典入门课程-第七讲情感分析

https://www.bilibili.com/video/av95951080/

斯坦福自然语言处理经典入门课程-第八讲生成模型判别模型最大熵模型分类器

https://www.bilibili.com/video/av95953429/

斯坦福自然语言处理经典入门课程-第九讲命名实体识别NER

https://www.bilibili.com/video/av96298777/

斯坦福自然语言处理经典入门课程-第十讲关系抽取

https://www.bilibili.com/video/av96299315/

斯坦福自然语言处理经典入门课程-第十一讲最大熵模型进阶

https://www.bilibili.com/video/av96314351/

斯坦福自然语言处理经典入门课程-第十二讲词性标注

https://www.bilibili.com/video/av96316377/

斯坦福自然语言处理经典入门课程-第十三讲句法分析

https://www.bilibili.com/video/av96675221/

斯坦福自然语言处理经典入门课程-第十四、十五讲概率句法分析

https://www.bilibili.com/video/av96675891/

斯坦福自然语言处理经典入门课程-第十六讲词法分析

https://www.bilibili.com/video/av96676532/

斯坦福自然语言处理经典入门课程-第十七讲依存句法分析

https://www.bilibili.com/video/av96676976/

斯坦福自然语言处理经典入门课程-第十八讲信息检索

https://www.bilibili.com/video/av96736911/

斯坦福自然语言处理经典入门课程-第十九讲信息检索进阶

https://www.bilibili.com/video/av96738129/

斯坦福自然语言处理经典入门课程-第二十讲语义学

https://www.bilibili.com/video/av96738928/

斯坦福自然语言处理经典入门课程-第二十一讲问答系统

https://www.bilibili.com/video/av96739766/

斯坦福自然语言处理经典入门课程-第二十二讲文本摘要二十三讲完结篇

https://www.bilibili.com/video/av96740680/

斯坦福自然语言处理经典入门课程-第一讲课程介绍及第二讲正则表达式

AINLP

这门课程录制于深度学习爆发前夕,授课是斯坦福教授 Dan Jurafsky 和 Christopher Manning 教授,两位都是自然语言处理领域的神牛:前者写了《Speech and Language Processing》(中文译名:自然语言处理综论),后者写了《Foundations of Statistical Natural Language Processing》(中文译名:统计自然语言处理基础),这两本书几乎是NLPer的必读书。这门课程适合NLP入门学习,可以了解基本的自然语言处理任务和早期经典的处理方法。

这是第一讲课程介绍和第二讲正则表达式的相关内容,实话实说,正则表达式在工作中用得相当之多了。

推荐两份NLP读书笔记和一份NLTK书籍代码中文注释版

AINLP

推荐一下AINLP技术交流群里 zYx.tom 同学贡献给大家的两份NLP读书笔记和一份中文注释代码,包括:

《自然语言处理综论》中文版第二版学习笔记

《计算机自然语言处理》学习笔记

《Python自然语言处理》学习代码的中文注释版本:NLTK-Python-CN

作者博客:https://zhuyuanxiang.github.io/

由作者授权,我把2份pdf文件放到github上了,感兴趣的同学可以直接在github上下载:

https://github.com/panyang/AINLP-Resource/tree/master/zYx.Tom

自然语言处理综论》是NLP领域的经典著作,第一版、第二版国内都有中文翻译版,目前英文版第三版《Speech and Language Processing (3rd ed. draft)》正在撰写中,已完结的章节草稿可以直接从slp3官网下载:https://web.stanford.edu/~jurafsky/slp3/ ,加了很多深度学习自然语言处理的相关章节,这里引用李纪为博士《初入NLP领域的一些小建议》中的一段描述,供计划学习这本书的同学参考:

了解NLP的最基本知识:Jurafsky和Martin的Speech and Language Processing是领域内的经典教材,里面包含了NLP的基础知识、语言学扫盲知识、基本任务以及解决思路。阅读此书会接触到很多NLP的最基本任务和知识,比如tagging, 各种parsing,coreference, semantic role labeling等等等等。这对于全局地了解NLP领域有着极其重要的意义。书里面的知识并不需要烂熟于心,但是刷上一两遍,起码对于NLP任务有基本认识,下次遇到了知道去哪里找还是非常有意义的。

《计算机自然语言处理》是哈工大王晓龙、关毅两位老师的中文NLP著作,我在刚入门NLP的时候读过,但是已经很久了,这本书在我早期的博文里记述过:《几本自然语言处理入门书》,唯一的印象就是第一次了解到本科母校HIT在中文NLP领域是非常厉害的。这本书貌似已经无法在电商网站买到,感兴趣的同学可以看看zYx.Tom同学的学习笔记。

NLTK是经典的Python NLP工具包,配套的书籍《Natural Language Processing with Python》目前也有了中文翻译版本,感兴趣的同学可以参考zYx.Tom同学的这份《Python自然语言处理》学习代码的中文注释版本:NLTK-Python-CN

最后,欢迎大家关注AINLP公众号,加入AINLP技术交流群,一起维护一个NLP技术交流环境。

如何学习自然语言处理:NLP领域经典《自然语言处理综论》英文版第三版更新

AINLP

如何学习NLP? 我觉得先要学好英语、数学和编程,因为英文世界的资料更丰富和原创,而数学会让你读论文的时候游刃有余、编程可以让你随时随地实现相关的idea。这好像是废话,那么闲话少说,进入正题。

去年写过一篇《如何学习自然语言处理:一本书和一门课》,介绍了NLP领域经典书籍《自然语言处理综论(Speech and Language Processing)》第三版的相关情况,时隔一年,很多事情发生了变化,包括第二版的中文翻译版终于出了。作为NLP入门书籍,十年前我读过这本书的第一版中文翻译版,第二版英文版;看到第二版中文翻译版和当前第三版英文版的相关内容,仿佛一个时代的跨越。

貌似为了方便2018年(斯坦福)秋季课程的原因,该书作者,NLP领域的大神 Daniel Jurafsky 教授和 James H. Martin 教授发布了一个截止2018年9月23日的单pdf文件:Speech and Language Processing (3rd ed. draft),包含了目前已经完成的所有章节,供用户下载和使用:

This is the release for the start of fall term 2018.
The slides are in the process of being updated now, we are putting them up as we write them.

Significantly rewritten version of 5, 6, 7, 8, 17, 18, 19, 23, 24, 25, and a draft of 9! New pedagogical sequences on neural networks and their training, starting with logistic regression and continuing with embeddings, feed-forward nets, and RNNs. Plus new or improved coverage of BPE, tf-idf, bias in embeddings, beam search decoding, HMMs, connotation frames, lexicon induction. reading comprehension/QA. Some chapters have been moved to the Appendix.

New lecture slides (so far) for chapters 6 and 25.

Here's a single pdf of the whole book-so-far!

Typos and comments welcome (just email slp3edbugs@gmail.com and let us know the date on the draft)!
And feel free to use the draft slides in your classes.

When will the book be finished? We're shooting for late 2019.

与之前的版本相比,重写了5、6、7、8、17、18、19、23、24、25章节的大部分内容和并新增了第9章节“递归神经网络中的序列处理(Sequence Processing with Recurrent Networks)”的草稿;调整了神经网络及其训练的教学顺序,从逻辑回归开始,到(词)嵌入,前馈网络以及递归神经网络;新增或者加大了BPE处理、tf-idf、柱搜索解码、隐马尔可夫模型、词典推理、阅读理解、自动问答等内容;一些旧的章节被移到附录。

另一个大家比较关心的问题,英文版第三版什么时候完工?官方预计要到2019年年底了。这本书英文版第一版自2000年出版,第二版英文版2008年出版,至今跨越接近20年,特别是这几年深度学习的风生水起,第三版增加了很多NLP和深度学习相关的内容,相对第二版变化有些大,这个第三版已完成章节的电子版草稿,总计有558页,估计全书完成时要秒杀第二版的厚度。

关于作者,两位都是NLP领域的神牛,以下是第二版中文翻译版中详细的介绍:

Daniel Jurafsky现任斯坦福大学语言学系和计算机科学系副教授。在此之前,他曾在博尔德的科罗拉多大学语言学系、计算机科学系和认知科学研究所任职。他出生于纽约州的Yonkers,1983年获语言学学士,1992年获计算机科学博士,两个学位都在伯克利加利福尼亚大学获得。他于1998年获得美国国家基金会CAREER奖,2002年获得Mac-Arthur奖。他发表过90多篇论文,内容涉及语音和语音处理的广泛领域。James H. Martin现任博尔德的科罗拉多大学语言学系、计算机科学系教授,认知科学研究所研究员。他出生于纽约市,1981年获可伦比亚大学计算机科学学士,1988年获伯克利加利福尼亚大学计算机科学博士。他写过70多篇关于计算机科学的论著,出版过《隐喻解释的计算机模型》(A Computational Model of Metaphor Interpretation)一书。

最后是如何下载这个电子版,其实官网上已经提供了相关的下载链接:https://web.stanford.edu/~jurafsky/slp3/ ,这篇文章上面的pdf也直接链向下载链接 ,如果还是无法下载这个电子版,可以关注我们的公众号:"NLPJob" , 回复 "slp3" 获取该书电子版以及 Daniel Jurafsky 教授之前在Coursera上开播的斯坦福大学自然语言处理课程相关资料视频(目前已绝版),一并学习自然语言处理。

注:原创文章,转载请注明出处及保留链接“我爱自然语言处理”:http://www.52nlp.cn

本文链接地址:如何学习自然语言处理:NLP领域经典《自然语言处理综论》英文版第三版更新 http://www.52nlp.cn/?p=10785