标签归档:Udacity

Coursera公开课笔记: 斯坦福大学机器学习第一课“引言(Introduction)”

Deep Learning Specialization on Coursera

注:这是我在“我爱公开课”上做的学习笔记,会在52opencourse和这里同步更新。随着Coursera和Udacity这样的注重交互式的网络课堂的兴起,相信传统教育模式即将遭到颠覆。欢迎大家在52opencourse这个问答平台上进行交流,希望能为大家提供一个开放、免费、高质量以及世界级的公开课中文交流平台和桥梁。

以下转自原文: Coursera公开课笔记: 斯坦福大学机器学习第一课“引言(Introduction)”

Coursera上于4月23号启动了6门公开课,其中包括斯坦福大学于“机器学习”课程,由机器学习领域的大牛Andrew Ng教授授课:

https://www.coursera.org/course/ml

课程刚刚开始,对机器学习感兴趣的同学尽量注册,这样即使没有时间学习,获取相关资料特别是视频比较方便。

由于工作繁忙的缘故,这批科目里我主要想系统的学习一下“机器学习”课程,所以计划在52opencourse和52nlp上同步我的机器学习课程笔记,一方面做个记录和总结,另一方面方便后来者参考。

Coursera上机器学习的课程学习过程是这样的:看Andrew Ng教授的授课视频或者看看课程相关的ppt;答系统随机出的题,一般5道题,单选、多选甚至填空,满分5分;编程作业,需用Octave(和 Matlab相似的开源编程语言)完成,提交给系统得分,在规定时间内完成,均取最高分,超过规定时间会对得分打折。

第一周(4月23日-4月29日)的课程包括三课:

  • Introduction(引言)
  • Linear Regression with One Variable(单变量线性回归)
  • (Optional) Linear Algebra Review(线性代数回顾)(对于线性代数熟悉的同学可以选修)
4月30日是答题(Review Questions)截至时间。
以下是第一课“引言”的PPT课件资料,视频可以在Coursera机器学习课程上观看或下载:
PPT   PDF
以下是本课程的学习笔记,除了参考机器学习课程本身的内容外,还参考网上其他资料,特别是维基百科来做注解,欢迎学习该课程的同学在“我爱公开课”上进行探讨。

继续阅读