标签归档:word2vec

斯坦福大学深度学习与自然语言处理第四讲:词窗口分类和神经网络

斯坦福大学在三月份开设了一门“深度学习与自然语言处理”的课程:CS224d: Deep Learning for Natural Language Processing,授课老师是青年才俊 Richard Socher,以下为相关的课程笔记。

第四讲:词窗口分类和神经网络(Word Window Classification and Neural Networks)

推荐阅读材料:

  1. [UFLDL tutorial]
  2. [Learning Representations by Backpropogating Errors]
  3. 第四讲Slides [slides]
  4. 第四讲视频 [video]

以下是第四讲的相关笔记,主要参考自课程的slides,视频和其他相关资料。
继续阅读

斯坦福大学深度学习与自然语言处理第三讲:高级的词向量表示

斯坦福大学在三月份开设了一门“深度学习与自然语言处理”的课程:CS224d: Deep Learning for Natural Language Processing,授课老师是青年才俊 Richard Socher,以下为相关的课程笔记。

第三讲:高级的词向量表示(Advanced word vector representations: language models, softmax, single layer networks)

推荐阅读材料:

  1. Paper1:[GloVe: Global Vectors for Word Representation]
  2. Paper2:[Improving Word Representations via Global Context and Multiple Word Prototypes]
  3. Notes:[Lecture Notes 2]
  4. 第三讲Slides [slides]
  5. 第三讲视频 [video]

以下是第三讲的相关笔记,主要参考自课程的slides,视频和其他相关资料。
继续阅读

斯坦福大学深度学习与自然语言处理第二讲:词向量

斯坦福大学在三月份开设了一门“深度学习与自然语言处理”的课程:CS224d: Deep Learning for Natural Language Processing,授课老师是青年才俊 Richard Socher,以下为相关的课程笔记。

第二讲:简单的词向量表示:word2vec, Glove(Simple Word Vector representations: word2vec, GloVe)

推荐阅读材料:

  1. Paper1:[Distributed Representations of Words and Phrases and their Compositionality]]
  2. Paper2:[Efficient Estimation of Word Representations in Vector Space]
  3. 第二讲Slides [slides]
  4. 第二讲视频 [video]

以下是第二讲的相关笔记,主要参考自课程的slides,视频和其他相关资料。
继续阅读

中英文维基百科语料上的Word2Vec实验

最近试了一下Word2Vec, GloVe 以及对应的python版本 gensim word2vecpython-glove,就有心在一个更大规模的语料上测试一下,自然而然维基百科的语料进入了视线。维基百科官方提供了一个很好的维基百科数据源:https://dumps.wikimedia.org,可以方便的下载多种语言多种格式的维基百科数据。此前通过gensim的玩过英文的维基百科语料并训练LSI,LDA模型来计算两个文档的相似度,所以想看看gensim有没有提供一种简便的方式来处理维基百科数据,训练word2vec模型,用于计算词语之间的语义相似度。感谢Google,在gensim的google group下,找到了一个很长的讨论帖:training word2vec on full Wikipedia ,这个帖子基本上把如何使用gensim在维基百科语料上训练word2vec模型的问题说清楚了,甚至参与讨论的gensim的作者Radim Řehůřek博士还在新的gensim版本里加了一点修正,而对于我来说,所做的工作就是做一下验证而已。虽然github上有一个wiki2vec的项目也是做得这个事,不过我更喜欢用python gensim的方式解决问题。

关于word2vec,这方面无论中英文的参考资料相当的多,英文方面既可以看官方推荐的论文,也可以看gensim作者Radim Řehůřek博士写得一些文章。而中文方面,推荐 @licstar的《Deep Learning in NLP (一)词向量和语言模型》,有道技术沙龙的《Deep Learning实战之word2vec》,@飞林沙 的《word2vec的学习思路》, falao_beiliu 的《深度学习word2vec笔记之基础篇》和《深度学习word2vec笔记之算法篇》等。
继续阅读