
Update: 这篇文章写于一年以前,这一年深度学习的大潮继续推进,1080也升级到1080TI了,攒机也有了更多更好的选择。最近更新了一篇文章:《从零开始搭建深度学习服务器:硬件选择》,可以看完下文后(主要提供了一些选择的思路),再来看最新的这篇(主要提供了一些配置选择),相得益彰。另外强烈不推荐雷霆世纪的主机,售后服务严重不靠谱。
这个系列写了好几篇文章,这是相关文章的索引,仅供参考:
- 深度学习主机攒机小记
- 深度学习主机环境配置: Ubuntu16.04+Nvidia GTX 1080+CUDA8.0
- 深度学习主机环境配置: Ubuntu16.04+GeForce GTX 1080+TensorFlow
- 深度学习服务器环境配置: Ubuntu17.04+Nvidia GTX 1080+CUDA 9.0+cuDNN 7.0+TensorFlow 1.3
- 从零开始搭建深度学习服务器:硬件选择
- 从零开始搭建深度学习服务器: 基础环境配置(Ubuntu + GTX 1080 TI + CUDA + cuDNN)
- 从零开始搭建深度学习服务器: 深度学习工具安装(TensorFlow + PyTorch + Torch)
- 从零开始搭建深度学习服务器: 1080TI四卡并行(Ubuntu16.04+CUDA9.2+cuDNN7.1+TensorFlow+Keras)
2016年5月中下旬的时候,GTX1080的公布和发售直接刺激了我攒一台深度学习主机的欲望,攒机对于我来说已经相隔十多年,大学时候的第一台PC就是攒出来的,其实也就是在5000元的预算内,去电脑城里找商家组装了一台台式机,美其名曰DIY。
虽然已经锁定显卡,但是对于其他的搭配还是很模糊,只是需要“好CPU”,“大内存", “大硬盘", 于是开始google “深度学习电脑”,“深度学习服务器”,“深度学习PC”, “深度学习主机”,“深度学习机器”,“深度学习工作站”这些关键词,并很快锁定了这篇文章《如何搭建一台深度学习服务器》作为主要参考:
硬件选择:基本思路是单显卡机器,保留升级空间
......
CPU选择:
在深度学习任务中,CPU并不负责主要任务,单显卡计算时只有一个核心达到100%负荷,所以CPU的核心数量和显卡数量一致即可,太多没有必要,但是处理PCIE的带宽要到40。主板选择:
需要支持X99架构,支持PCIe3.0,还要支持4通道DDR4内存架构。如果要搞四显卡并行,PCIE带宽支持要达到40,并且支持4-Way NVIDA SLI技术。内存:
达到显存的二倍即可,当然有钱的话越大越好。电源问题:一个显卡的功率接近300W,四显卡建议电源在1500W以上,为了以后扩展,选择了1600W的电源。
机箱散热:
因为各种部件相当庞大,需要有良好散热功能的大机箱,选择了Tt Thermaltake Core V51机箱,标配3个12cm风扇。未来如果需要还可以加装水冷设备。......
最后的硬件配置:
CPU: Intel X99平台 i7 5960K
内存: DDR4 2800 32G(8G*4)
主板: GIGABYTE X99-UD4
显卡: GTX Titan X
硬盘: SSD+普通硬盘