标签归档:python

中文命名实体识别工具(NER)哪家强?

自去年以来,在AINLP公众号上陆续给大家提供了自然语言处理相关的基础工具的在线测试接口,使用很简单,关注AINLP公众号,后台对话关键词触发测试,例如输入 “中文分词 我爱自然语言处理”,“词性标注 我爱NLP”,“情感分析 自然语言处理爱我","Stanza 52nlp" 等,具体可参考下述文章:

五款中文分词工具在线PK: Jieba, SnowNLP, PkuSeg, THULAC, HanLP
中文分词工具在线PK新增:FoolNLTK、LTP、StanfordCoreNLP
Python中文分词工具大合集:安装、使用和测试
八款中文词性标注工具使用及在线测试
百度深度学习中文词法分析工具LAC试用之旅
来,试试百度的深度学习情感分析工具
AINLP公众号新增SnowNLP情感分析模块
斯坦福大学NLP组Python深度学习自然语言处理工具Stanza试用

既然中文分词、词性标注已经有了,那下一步很自然想到的是命名实体识别(NER,Named-entity recognition)工具了,不过根据我目前了解到的情况,开源的中文命名实体工具并不多,这里主要指的是一些成熟的自然语言处理开源工具,不是github上一些学习性质的代码。目前明确有NER标记的包括斯坦福大学的NLP组的Stanza,百度的Paddle Lac,哈工大的LTP,而其他这些测试过的开源NLP基础工具,需要从词性标注结果中提取相对应的专有名词,也算是一种折中方案。 继续阅读

一键收藏自然语言处理学习资源大礼包

虽然知道大多数同学都有资料收藏癖,还是给大家准备一份自然语言处理学习大礼包,其实是之前陆陆续续分享的NLP学习资源,包括自然语言处理、深度学习、机器学习、数学相关的经典课程、书籍和学习笔记,这些资料基本上都是公开渠道可以获得的,整理到一起,方便NLP爱好者收藏把玩。当然,学习的前提依然是”学自然语言处理,其实更应该学好英语“

获取方法很简单,关注AINLP公众号,后台回复关键词:ALL4NLP,一键打包收藏NLP学习资源: 继续阅读

Springer面向公众开放正版电子书籍,附65本数学、编程、数据挖掘、数据科学、数据分析、机器学习、深度学习、人工智能相关书籍链接及打包下载

施普林格(Springer)是世界著名的科技期刊、图书出版公司,这次疫情期间面向公众免费开放了一批社科人文,自然科学等领域的正版电子书籍(据说是400多本),towardsdatascience 上有学者将其中65本机器学习和数据科学以及统计相关的免费教材下载链接整理了出来,我试了一下,无需注册,可以直接下载相关的PDF书籍,相当方便:Springer has released 65 Machine Learning and Data books for free(https://towardsdatascience.com/springer-has-released-65-machine-learning-and-data-books-for-free-961f8181f189)。 继续阅读

斯坦福大学NLP组Python深度学习自然语言处理工具Stanza试用

众所周知,斯坦福大学自然语言处理组出品了一系列NLP工具包,但是大多数都是用Java写得,对于Python用户不是很友好。几年前我曾基于斯坦福Java工具包和NLTK写过一个简单的中文分词接口:Python自然语言处理实践: 在NLTK中使用斯坦福中文分词器,不过用起来也不是很方便。深度学习自然语言处理时代,斯坦福大学自然语言处理组开发了一个纯Python版本的深度学习NLP工具包:Stanza - A Python NLP Library for Many Human Languages,前段时间,Stanza v1.0.0 版本正式发布,算是一个里程碑: 继续阅读

推荐两份NLP读书笔记和一份NLTK书籍代码中文注释版

推荐一下AINLP技术交流群里 zYx.tom 同学贡献给大家的两份NLP读书笔记和一份中文注释代码,包括:

《自然语言处理综论》中文版第二版学习笔记

《计算机自然语言处理》学习笔记

《Python自然语言处理》学习代码的中文注释版本:NLTK-Python-CN

作者博客:https://zhuyuanxiang.github.io/

由作者授权,我把2份pdf文件放到github上了,感兴趣的同学可以直接在github上下载:

https://github.com/panyang/AINLP-Resource/tree/master/zYx.Tom

自然语言处理综论》是NLP领域的经典著作,第一版、第二版国内都有中文翻译版,目前英文版第三版《Speech and Language Processing (3rd ed. draft)》正在撰写中,已完结的章节草稿可以直接从slp3官网下载:https://web.stanford.edu/~jurafsky/slp3/ ,加了很多深度学习自然语言处理的相关章节,这里引用李纪为博士《初入NLP领域的一些小建议》中的一段描述,供计划学习这本书的同学参考:

了解NLP的最基本知识:Jurafsky和Martin的Speech and Language Processing是领域内的经典教材,里面包含了NLP的基础知识、语言学扫盲知识、基本任务以及解决思路。阅读此书会接触到很多NLP的最基本任务和知识,比如tagging, 各种parsing,coreference, semantic role labeling等等等等。这对于全局地了解NLP领域有着极其重要的意义。书里面的知识并不需要烂熟于心,但是刷上一两遍,起码对于NLP任务有基本认识,下次遇到了知道去哪里找还是非常有意义的。

《计算机自然语言处理》是哈工大王晓龙、关毅两位老师的中文NLP著作,我在刚入门NLP的时候读过,但是已经很久了,这本书在我早期的博文里记述过:《几本自然语言处理入门书》,唯一的印象就是第一次了解到本科母校HIT在中文NLP领域是非常厉害的。这本书貌似已经无法在电商网站买到,感兴趣的同学可以看看zYx.Tom同学的学习笔记。

NLTK是经典的Python NLP工具包,配套的书籍《Natural Language Processing with Python》目前也有了中文翻译版本,感兴趣的同学可以参考zYx.Tom同学的这份《Python自然语言处理》学习代码的中文注释版本:NLTK-Python-CN

最后,欢迎大家关注AINLP公众号,加入AINLP技术交流群,一起维护一个NLP技术交流环境。

推荐一份中文数据,再试试汉字、词语、成语、歇后语在线检索

前段时间给公众号新增了一个成语接龙功能:AINLP公众号对话接口新增成语接龙,这个里面提到的项目用到了一份成语数据,包含了2万多条成语数据和释义。不过这个数据之外,推荐一个更棒的Github项目:

pwxcoo/chinese-xinhuahttps://github.com/pwxcoo/chinese-xinhua

这个项目收录了收录了 14032 条歇后语,16142 个汉字,264434 个词语,31648 个成语,并且以json格式提供了相关数据,非常方便:

项目结构:

chinese-xinhua/
|
+- data/ <-- 数据文件夹
|  |
|  +- idiom.json <-- 成语
|  |
|  +- word.json <-- 汉字
|  |
|  +- xiehouyu.json <-- 歇后语
|  |
|  +- ci.json <-- 词语

汉字例子:

    {
        "word": "吖",
        "oldword": "吖",
        "strokes": "6",
        "pinyin": "ā",
        "radicals": "口",
        "explanation": "喊叫天~地。\n 形容喊叫的声音高声叫~~。\n\n 吖ā[吖啶黄](-dìnghuáng)〈名〉一种注射剂。\n ────────────────—\n \n 吖yā 1.呼;喊。",
        "more": "吖 a 部首 口 部首笔画 03 总笔画 06  吖2\nyā\n喊,呼喊 [cry]\n不索你没来由这般叫天吖地。--高文秀《黑旋风》\n吖\nyā\n喊声\n则听得巡院家高声的叫吖吖。--张国宾《合汗衫》\n另见ā\n吖1\nā\n--外国语的音译,主要用于有机化学。如吖嗪\n吖啶\nādìng\n[acridine] 一种无色晶状微碱性三环化合物c13h9n,存在于煤焦油的粗蒽馏分中,是制造染料和药物(如吖啶黄素和奎吖因)的重要母体化合物\n吖1\nyā ㄧㄚˉ\n(1)\n喊叫天~地。\n(2)\n形容喊叫的声音高声叫~~。\n郑码jui,u5416,gbkdfb9\n笔画数6,部首口,笔顺编号251432\n吖2\nā ㄚˉ\n叹词,相当于呵”。\n郑码jui,u5416,gbkdfb9\n笔画数6,部首口,笔顺编号251432"
    }

词典例子:

{
    "ci": "总计", 
    "explanation": "1.总共计算。 \n2.犹统计。"}

成语例子:

{
    "derivation": "清·嬴宗季女《六月霜·恤纬》劝夫人省可闲愁绪,足食丰衣无所虑,何况俺爷贵胄都时誉。”", 
    "example": "无", 
    "explanation": "丰衣足食。形容生活富裕。", 
    "pinyin": "zú shí fēng yī", 
    "word": "足食丰衣", "abbreviation": 
    "zsfy"
}

歇后语例子:

   {
        "riddle": "正月十五云遮月",
        "answer": "不露脸"
    },
    {
        "riddle": "正月十五贴门神",
        "answer": "晚了半月"
    },
    {
        "riddle": "正月十五贴春联",
        "answer": "晚了半月了"
    },
    {
        "riddle": "正月十五卖元宵",
        "answer": "抱成团"
    },
    {
        "riddle": "正月十五看花灯",
        "answer": "走着瞧"
    },
    {
        "riddle": "正月十五赶庙会",
        "answer": "随大流"
    }

我把这份数据放到了Elasticsearch里,并且通过ES的Python接口elasticsearch-py提供后端检索服务,现在可以通过AINLP公众号对话接口检索了,感兴趣的同学可以一试,包括:

汉字检索:

词语检索:

成语检索:

歇后语检索:

感兴趣的同学可以关注AINLP公众号,直接公众号对话测试,更多功能可以参考:
一个有趣有AI的NLP公众号

注:原创文章,转载请注明出处及保留链接“我爱自然语言处理”:https://www.52nlp.cn

本文链接地址:推荐一份中文数据,再试试汉字、词语、成语、歇后语在线检索 https://www.52nlp.cn/?p=12087

AINLP公众号新增SnowNLP情感分析模块

上周给AINLP公众号对话增加了百度中文情感分析接口:百度深度学习中文情感分析工具Senta试用及在线测试,很多同学通过公众号对话进行测试,玩得很嗨,不过感觉中文情感分析的成熟工具还是不多。这个周末调研了一下之前用于测试中文分词和词性标注的工具,发现SnowNLP和HanLP提供情感分析的接口,不过后者貌似没有提供Python接口,而SnowNLP作为原生的Python中文自然语言处理工具包,用起来还是比较方便的,唯一的问题是它的训练语料覆盖领域,官方文档是这样说的:

SnowNLP: https://github.com/isnowfy/snownlp

情感分析(现在训练数据主要是买卖东西时的评价,所以对其他的一些可能效果不是很好,待解决)

使用起来也很简单,注意SnowNLP的情感分析只有正向概率,以下测试例子也有bad case:

In [1]: from snownlp import SnowNLP                                            
 
In [2]: s = SnowNLP('我爱自然语言处理')                                        
 
In [3]: s.sentiments                                                           
Out[3]: 0.9243733698974206
 
In [4]: s = SnowNLP('我不爱自然语言处理')                                      
 
In [5]: s.sentiments                                                           
Out[5]: 0.8043511626271524
 
In [6]: s = SnowNLP('太难吃了')                                                
 
In [7]: s.sentiments                                                           
Out[7]: 0.27333037073511146

感兴趣的同学可以直接关注AINLP公众号,直接测试这两个中文情感分析模块:BaiduSenta和SnowNLP


继续阅读

百度深度学习中文情感分析工具Senta试用及在线测试

情感分析是自然语言处理里面一个热门话题,去年参加AI Challenger时关注了一下细粒度情感分析赛道,当时模仿baseline写了一个fasttext版本:AI Challenger 2018 细粒度用户评论情感分析 fastText Baseline ,至今不断有同学在star这个项目:fastText-for-AI-Challenger-Sentiment-Analysis

周末通过PaddleHub试用了一下百度的深度学习中文情感分析工具Senta,还是很方便,于是,将这个作为中文情感分析的一个技能点加入到了AINLP公众号的对话中,感兴趣的同学可以先测试:

至于安装和使用,还是简单说一下,以下是在Ubuntu16.04, Python3.x virtualenv环境下安装和测试。

安装直接通过pip install即可:

pip install paddlepaddle(这里用的是CPU版本)
pip install paddlehub

关于如何使用百度这个中文情感分析工具,最直接的方法还是follow官方demo脚本:

PaddleHub/demo/senta/senta_demo.py

在iPython中大致如下调用:

Python 3.5.2 (default, Nov 12 2018, 13:43:14) 
Type 'copyright', 'credits' or 'license' for more information
IPython 7.5.0 -- An enhanced Interactive Python. Type '?' for help.
 
In [1]: import paddlehub as hub                                                                 
 
In [2]: senta = hub.Module(name="senta_bilstm")                                                 
2019-07-06 22:33:01,181-INFO: Installing senta_bilstm module
2019-07-06 22:33:01,182-INFO: Module senta_bilstm already installed in /home/textminer/.paddlehub/modules/senta_bilstm
 
In [3]: test_text = ["这家餐厅很好吃", "这部电影真的很差劲","我爱自然语言处理"]                
 
In [4]: input_dict = {"text": test_text}                                                        
 
In [5]: results = senta.sentiment_classify(data=input_dict)                                     
2019-07-06 22:33:53,835-INFO: 13 pretrained paramaters loaded by PaddleHub
2019-07-06 22:33:53,839-INFO: 20 pretrained paramaters loaded by PaddleHub
 
In [6]: for result in results: 
   ...:     print(result) 
   ...:                                                                                         
{'positive_probs': 0.9363, 'text': '这家餐厅很好吃', 'sentiment_key': 'positive', 'negative_probs': 0.0637, 'sentiment_label': 2}
{'positive_probs': 0.0213, 'text': '这部电影真的很差劲', 'sentiment_key': 'negative', 'negative_probs': 0.9787, 'sentiment_label': 0}
{'positive_probs': 0.9501, 'text': '我爱自然语言处理', 'sentiment_key': 'positive', 'negative_probs': 0.0499, 'sentiment_label': 2}

继续阅读

百度深度学习中文词法分析工具LAC试用之旅

之前在调研中文分词词性标注相关工具的时候就发现了百度的深度学习中文词法分析工具:baidu/lac(https://github.com/baidu/lac),但是通过这个项目github上的文档描述以及实际动手尝试源码编译安装发现非常繁琐,缺乏通常中文分词工具的易用性,所以第一次接触完百度lac之后就放弃了:

LAC是一个联合的词法分析模型,整体性地完成中文分词、词性标注、专名识别任务。LAC既可以认为是Lexical Analysis of Chinese的首字母缩写,也可以认为是LAC Analyzes Chinese的递归缩写。

LAC基于一个堆叠的双向GRU结构,在长文本上准确复刻了百度AI开放平台上的词法分析算法。效果方面,分词、词性、专名识别的整体准确率95.5%;单独评估专名识别任务,F值87.1%(准确90.3,召回85.4%),总体略优于开放平台版本。在效果优化的基础上,LAC的模型简洁高效,内存开销不到100M,而速度则比百度AI开放平台提高了57%。

本项目依赖Paddle v0.14.0版本。如果您的Paddle安装版本低于此要求,请按照安装文档中的说明更新Paddle安装版本。如果您使用的Paddle是v1.1以后的版本,请使用该项目的分支for_paddle_v1.1。注意,LAC模块中的conf目录下的很多文件是采用git-lfs存储,使用git clone时,需要先安装git-lfs。

为了达到和机器运行环境的最佳匹配,我们建议基于源码编译安装Paddle,后文也将展开讨论一些编译安装的细节。当然,如果您发现符合机器环境的预编译版本在官网发布,也可以尝试直接选用。

最近发现百度将自己的一些自然语言处理工具整合在PaddleNLP下,文档写得相对清楚多了:

PaddleNLP是百度开源的工业级NLP工具与预训练模型集,能够适应全面丰富的NLP任务,方便开发者灵活插拔尝试多种网络结构,并且让应用最快速达到工业级效果。

PaddleNLP完全基于PaddlePaddle Fluid开发,并提供依托于百度百亿级大数据的预训练模型,能够极大地方便NLP研究者和工程师快速应用。使用者可以用PaddleNLP快速实现文本分类、文本匹配、序列标注、阅读理解、智能对话等NLP任务的组网、建模和部署,而且可以直接使用百度开源工业级预训练模型进行快速应用。用户在极大地减少研究和开发成本的同时,也可以获得更好的基于工业实践的应用效果。

继续阅读

八款中文词性标注工具使用及在线测试

结束了中文分词工具的安装、使用及在线测试,开启中文词性标注在线测试之旅,一般来说,中文分词工具大多数都附带词性标注功能的,这里测试了之前在AINLP公众号上线的8款中文分词模块或者工具,发现它们都是支持中文词性标注的,这里面唯一的区别,就是各自用的词性标注集可能有不同:

以下逐一介绍这八个工具的中文词性标注功能的使用方法,至于安装,这里简要介绍,或者可以参考之前这篇文章:Python中文分词工具大合集:安装、使用和测试,以下是在Ubuntu16.04 & Python3.x的环境下安装及测试。
继续阅读