分类目录归档:机器学习

机器学习保险行业问答开放数据集: 2. 使用案例

Deep Learning Specialization on Coursera

上一篇文章中,介绍了数据集的设计,该语料可以用于研究和学习,从规模和质量上,是目前中文问答语料中,保险行业垂直领域最优秀的语料,关于该语料制作过程可以通过语料主页了解,本篇的主要内容是使用该语料实现一个简单的问答模型,并且给出准确度和损失函数作为数据集的Baseline。

DeepQA-1

为了展示如何使用该语料训练模型和评测算法,我做了一个示例项目 - DeepQA-1,本文接下来会介绍DeepQA-1,假设读者了解深度学习基本概念和Python语言。

Data Loader

数据加载包含两部分:加载语料和预处理。 加载数据使用 insuranceqa_data  载入训练,测试和验证集的数据。

预处理是按照模型的超参数处理问题和答案,将它们组合成输入需要的格式,在本文介绍的baseline model中,预处理包含下面工作:

  1. 在词汇表(vocab)中添加辅助Token: <PAD>, <GO>. 假设x是问题序列,是u回复序列,输入序列可以表示为:

超参数question_max_length代表模型中问题的最大长度。 超参数utterance_max_length代表模型中回复的最大长度,回复可能是正例,也可能是负例。

其中,Token <GO> 用来分隔问题和回复,Token <PAD> 用来补齐问题或回复。

训练数据包含了141,779条,正例:负例=1:10,根据超参数生成输入序列:

上图 中 x 就是输入序列。y_代表标注数据:正例还是负例,正例标为[1,0],负例标为[0,1],这样做的好处是方便计算损失函数和准确度。测试数据和验证数据也用同样的方式进行处理,唯一不同的是它们不需要做成mini-batch。需要强调的是,处理词汇表和构建输入序列的方式可以尝试用不同的方法,上述方案仅作为表达baseline结果而采用,一些有助于增强模型能力的,比如使用word2vec训练词向量都值得尝试。

Network

baseline model使用了最简单的神经网络,输入序列从左侧进入,输出序列输出包含2个数值的vector,然后使用损失函数计算误差。

超参数,Hyper params

损失函数

神经网络的激活函数使用函数,损失函数使用最大似然的思想。

 

迭代训练

使用mini-batch加载数据,迭代训练的大部分工作在back_propagation中完成,它计算出每次迭代的损失和b,W 的误差率,然后使用学习率和误差率更新每个b,W 。

 

执行训练脚本

python3 deep_qa_1/network.py

Visual

在训练过程中,观察损失函数和准确度的变化可以帮助优化超参数的设计。

loss

python3 visual/loss.py

accuracy

python3 visual/accuracy.py

在迭代了25,000步后就基本维持在一个固定值,学习停止了。

Baseline

使用获得的Baseline数据为:

Epoch 25, total step 36400, accuracy 0.9031, cost 1.056221.

总结

Baseline model设计的非常简单,它展示了如何使用insuranceqa-corpus-zh训练FAQ问答模型,项目的源码参考这里。在过去两周中,为了能让这个数据集能满足使用,体现其价值,我花了很多时间来建设,仓促之中仍然会包含一些不足,比如数据集中,每个问题是唯一的,不包含相似问题,是这个数据集目前最大的缺陷,另外一方面,因为该数据集的回复包含一个正例和多个负例,可以用用于训练分类器,也可以用于训练ranking model。如果在使用的过程中,遇到任何问题,可以通过数据集的地址 反馈。

反向传播算法入门资源索引

Deep Learning Specialization on Coursera

1、一切从维基百科开始,大致了解一个全貌:
反向传播算法 Backpropagation

2、拿起纸和笔,再加上ipython or 计算器,通过一个例子直观感受反向传播算法:
A Step by Step Backpropagation Example

3、再玩一下上篇例子对应的200多行Python代码: Neural Network with Backpropagation

4、有了上述直观的反向传播算法体验,可以从1986年这篇经典的论文入手了:Learning representations by back-propagating errors

5、如果还是觉得晦涩,推荐读一下"Neural Networks and Deep Learning"这本深度学习在线书籍的第二章:How the backpropagation algorithm works

6、或者可以通过油管看一下这个神经网络教程的前几节关于反向传播算法的视频: Neural Network Tutorial

7、hankcs 同学对于上述视频和相关材料有一个解读: 反向传播神经网络极简入门

8、这里还有一个比较简洁的数学推导:Derivation of Backpropagation

9、神牛gogo 同学对反向传播算法原理及代码解读:神经网络反向传播的数学原理

10、关于反向传播算法,更本质一个解释:自动微分反向模式(Reverse-mode differentiation )Calculus on Computational Graphs: Backpropagation

注:原创文章,转载请注明出处及保留链接“我爱自然语言处理”:http://www.52nlp.cn

本文链接地址:反向传播算法入门资源索引 http://www.52nlp.cn/?p=9350

QA问答系统中的深度学习技术实现

Deep Learning Specialization on Coursera

应用场景

智能问答机器人火得不行,开始研究深度学习在NLP领域的应用已经有一段时间,最近在用深度学习模型直接进行QA系统的问答匹配。主流的还是CNN和LSTM,在网上没有找到特别合适的可用的代码,自己先写了一个CNN的(theano),效果还行,跟论文中的结论是吻合的。目前已经应用到了我们的产品上。

原理

参看《Applying Deep Learning To Answer Selection: A Study And An Open Task》,文中比较了好几种网络结构,选择了效果相对较好的其中一个来实现,网络描述如下:

qacnn_v2

Q&A共用一个网络,网络中包括HL,CNN,P+T和Cosine_Similarity,HL是一个g(W*X+b)的非线性变换,CNN就不说了,P是max_pooling,T是激活函数Tanh,最后的Cosine_Similarity表示将Q&A输出的语义表示向量进行相似度计算。

详细描述下从输入到输出的矩阵变换过程:

  1. Qp:[batch_size, sequence_len],Qp是Q之前的一个表示(在上图中没有画出)。所有句子需要截断或padding到一个固定长度(因为后面的CNN一般是处理固定长度的矩阵),例如句子包含3个字ABC,我们选择固定长度sequence_len为100,则需要将这个句子padding成ABC<a><a>...<a>(100个字),其中的<a>就是添加的专门用于padding的无意义的符号。训练时都是做mini-batch的,所以这里是一个batch_size行的矩阵,每行是一个句子。
  2. Q:[batch_size, sequence_len, embedding_size]。句子中的每个字都需要转换成对应的字向量,字向量的维度大小是embedding_size,这样Qp就从一个2维的矩阵变成了3维的Q
  3. HL层输出:[batch_size, embedding_size, hl_size]。HL层:[embedding_size, hl_size],Q中的每个句子会通过和HL层的点积进行变换,相当于将每个字的字向量从embedding_size大小变换到hl_size大小。
  4. CNN+P+T输出:[batch_size, num_filters_total]。CNN的filter大小是[filter_size, hl_size],列大小是hl_size,这个和字向量的大小是一样的,所以对每个句子而言,每个filter出来的结果是一个列向量(而不是矩阵),列向量再取max-pooling就变成了一个数字,每个filter输出一个数字,num_filters_total个filter出来的结果当然就是[num_filters_total]大小的向量,这样就得到了一个句子的语义表示向量。T就是在输出结果上加上Tanh激活函数。
  5. Cosine_Similarity:[batch_size]。最后的一层并不是通常的分类或者回归的方法,而是采用了计算两个向量(Q&A)夹角的方法,下面是网络损失函数。t2,m是需要设定的参数margin,VQ、VA+、VA-分别是问题、正向答案、负向答案对应的语义表示向量。损失函数的意义就是:让正向答案和问题之间的向量cosine值要大于负向答案和问题的向量cosine值,大多少,就是margin这个参数来定义的。cosine值越大,两个向量越相近,所以通俗的说这个Loss就是要让正向的答案和问题愈来愈相似,让负向的答案和问题越来越不相似。

实现

代码点击这里,使用的数据是一份英文的insuranceQA,下面介绍代码重点部分:

字向量。本文采用字向量的方法,没有使用词向量。使用字向量的目的主要是为了解决未登录词的问题,这样在测试的时候就很少会遇到Unknown的字向量的问题了。而且字向量的效果也不一定比词向量的效果差,还省去了分词的各种麻烦。先用word2vec生成一份字向量,相当于我们在做pre-training了(之后测试了随机初始化字向量的方法,效果差不多)

原理中的步骤2。这里没有做HL层的变换,实际测试中,增加HL层有非常非常小的提升,所以在这里就省去了改步骤。

t4

CNN可以设置多种大小的filter,最后各种filter的结果会拼接起来。

t5

原理中的步骤4。这里执行卷积,max-pooling和Tanh激活。

t6

生成的ouputs_1是一个python的list,使用concatenate将list的多个tensor拼接起来(list中的每个tensor表示一种大小的filter卷积的结果)t7

原理中的步骤5。计算问题、正向答案、负向答案的向量夹角

t8

生成Loss损失函数和Accuracy。t9

核心的网络构建代码就是这些,其他的代码都是训练数据、验证数据的读入,以及theano构建训练时的一些常规代码。

如果需要增加HL层,可参照如下的代码。Whl即是HL层的网络,将input和Whl点积即可。t10

dropout的实现。

t11

结果

使用上面的代码,Test 1的Top-1 Accuracy可以达到61%-62%,和论文中的结论基本一致了,至于论文中提到的GESD、AESD等方法没有再测试了,运行较慢,其他数据集也没有再测试了。

下面是国外友人用一个叫keras的工具(封装的theano和tensorflow)弄的类似代码,Test 1的Top-1准确率在50%左右,比他这个要高:)

http://benjaminbolte.com/blog/2016/keras-language-modeling.html

Test set Top-1 Accuracy Mean Reciprocal Rank
Test 1 0.4933 0.6189
Test 2 0.4606 0.5968
Dev 0.4700 0.6088

另外,原始的insuranceQA需要进行一些处理才能在这个代码上使用,具体参看github上的说明吧。

一些技巧

  1. 字向量和词向量的效果相当。所以优先使用字向量,省去了分词的麻烦,还能更好的避免未登录词的问题,何乐而不为。
  2. 字向量不是固定的,在训练中会更新
  3. Dropout的使用对最高的准确率没有很大的影响,但是使用了Dropout的结果更稳定,准确率的波动会更小,所以建议还是要使用Dropout的。不过Dropout也不易过度使用,比如Dropout的keep_prob概率如果设置到0.25,则模型收敛得更慢,训练时间长很多,效果也有可能会更差,设置会差很多。我这版代码使用的keep_prob为0.5,同时保证准确率和训练时间。另外,Dropout只应用到了max-pooling的结果上,其他地方没有再使用了,过多的使用反而不好。
  4. 如何生成训练集。每个训练case需要一个问题+一个正向答案+一个负向答案,很明显问题和正向答案都是有的,负向答案的生成方法就是随机采样,这样就不需要涉及任何人工标注工作了,可以很方便的应用到大数据集上。
  5. HL层的效果不明显,有很微量的提升。如果HL层的大小是200,字向量是100,则HL层相当于将字向量再放大一倍,这个感觉没有多少信息可利用的,还不如直接将字向量设置成200,还省去了HL这一层的变换。
  6. margin的值一般都设置得比较小。这里用的是0.05
  7. 如果将Cosine_similarity这一层换成分类或者回归,印象中效果是不如Cosine_similarity的(具体数据忘了)
  8. num_filters越大并不是效果越好,基本到了一定程度就很难提升了,反而会降低训练速度。
  9. 同时也写了tensorflow版本代码,对比theano的,效果差不多
  10. Adam和SGD两种训练方法比较,Adam训练速度貌似会更快一些,效果基本也持平吧,没有太细节的对比。不过同样的网络+SGD,theano好像训练要更快一些。
  11. Loss和Accuracy是比较重要的监控参数。如果写一个新的网络的话,类似的指标是很有必要的,可以在每个迭代中评估网络是否正在收敛。因为调试比较麻烦,所以通过这些参数能评估你的网络写对没,参数设置是否正确。
  12. 网络的参数还是比较重要的,如果一些参数设置不合理,很有可能结果千差万别,记得最初用tensorflow实现的时候,应该是dropout设置得太小,导致效果很差,很久才找到原因。所以调参和微调网络还是需要一定的技巧和经验的,做这版代码的时候就经历了一段比较痛苦的调参过程,最开始还怀疑是网络设计或是代码有问题,最后总结应该就是参数没设置好。

结语

如果关注这个东西的人多的话,后面还可以有tensorflow版本的QA CNN,以及LSTM的代码奉上:)

补充

tensorflow的CNN代码已添加到github上,点击这里

Contact: jiangwen127@gmail.com weibo:码坛奥沙利文

斯坦福大学深度学习与自然语言处理第四讲:词窗口分类和神经网络

Deep Learning Specialization on Coursera

斯坦福大学在三月份开设了一门“深度学习与自然语言处理”的课程:CS224d: Deep Learning for Natural Language Processing,授课老师是青年才俊 Richard Socher,以下为相关的课程笔记。

第四讲:词窗口分类和神经网络(Word Window Classification and Neural Networks)

推荐阅读材料:

  1. [UFLDL tutorial]
  2. [Learning Representations by Backpropogating Errors]
  3. 第四讲Slides [slides]
  4. 第四讲视频 [video]

以下是第四讲的相关笔记,主要参考自课程的slides,视频和其他相关资料。
继续阅读

斯坦福大学深度学习与自然语言处理第三讲:高级的词向量表示

Deep Learning Specialization on Coursera

斯坦福大学在三月份开设了一门“深度学习与自然语言处理”的课程:CS224d: Deep Learning for Natural Language Processing,授课老师是青年才俊 Richard Socher,以下为相关的课程笔记。

第三讲:高级的词向量表示(Advanced word vector representations: language models, softmax, single layer networks)

推荐阅读材料:

  1. Paper1:[GloVe: Global Vectors for Word Representation]
  2. Paper2:[Improving Word Representations via Global Context and Multiple Word Prototypes]
  3. Notes:[Lecture Notes 2]
  4. 第三讲Slides [slides]
  5. 第三讲视频 [video]

以下是第三讲的相关笔记,主要参考自课程的slides,视频和其他相关资料。
继续阅读

斯坦福大学深度学习与自然语言处理第二讲:词向量

Deep Learning Specialization on Coursera

斯坦福大学在三月份开设了一门“深度学习与自然语言处理”的课程:CS224d: Deep Learning for Natural Language Processing,授课老师是青年才俊 Richard Socher,以下为相关的课程笔记。

第二讲:简单的词向量表示:word2vec, Glove(Simple Word Vector representations: word2vec, GloVe)

推荐阅读材料:

  1. Paper1:[Distributed Representations of Words and Phrases and their Compositionality]]
  2. Paper2:[Efficient Estimation of Word Representations in Vector Space]
  3. 第二讲Slides [slides]
  4. 第二讲视频 [video]

以下是第二讲的相关笔记,主要参考自课程的slides,视频和其他相关资料。
继续阅读

斯坦福大学深度学习与自然语言处理第一讲:引言

Deep Learning Specialization on Coursera

斯坦福大学在三月份开设了一门“深度学习与自然语言处理”的课程:CS224d: Deep Learning for Natural Language Processing,授课老师是青年才俊 Richard Socher,他本人是德国人,大学期间涉足自然语言处理,在德国读研时又专攻计算机视觉,之后在斯坦福大学攻读博士学位,拜师NLP领域的巨牛 Chris ManningDeep Learning 领域的巨牛 Andrew Ng,其博士论文是《Recursive Deep Learning for Natural Language Processing and Computer Vision》,也算是多年求学生涯的完美一击。毕业后以联合创始人及CTO的身份创办了MetaMind,作为AI领域的新星创业公司,MetaMind创办之初就拿了800万美元的风投,值得关注。

回到这们课程CS224d,其实可以翻译为“面向自然语言处理的深度学习(Deep Learning for Natural Language Processing)”,这门课程是面向斯坦福学生的校内课程,不过课程的相关材料都放到了网上,包括课程视频,课件,相关知识,预备知识,作业等等,相当齐备。课程大纲相当有章法和深度,从基础讲起,再讲到深度学习在NLP领域的具体应用,包括命名实体识别,机器翻译,句法分析器,情感分析等。Richard Socher此前在ACL 2012和NAACL 2013 做过一个Tutorial,Deep Learning for NLP (without Magic),感兴趣的同学可以先参考一下: Deep Learning for NLP (without Magic) - ACL 2012 Tutorial - 相关视频及课件 。另外,由于这门课程的视频放在Youtube上,@爱可可-爱生活 老师维护了一个网盘链接:http://pan.baidu.com/s/1pJyrXaF ,同步更新相关资料,可以关注。
继续阅读

PRML读书会第十四章 Combining Models

Deep Learning Specialization on Coursera

PRML读书会第十四章 Combining Models

主讲人 网神

(新浪微博: @豆角茄子麻酱凉面

网神(66707180) 18:57:18

大家好,今天我们讲一下第14章combining models,这一章是联合模型,通过将多个模型以某种形式结合起来,可以获得比单个模型更好的预测效果。包括这几部分:
committees, 训练多个不同的模型,取其平均值作为最终预测值。

boosting: 是committees的特殊形式,顺序训练L个模型,每个模型的训练依赖前一个模型的训练结果。
决策树:不同模型负责输入变量的不同区间的预测,每个样本选择一个模型来预测,选择过程就像在树结构中从顶到叶子的遍历。
conditional mixture model条件混合模型:引入概率机制来选择不同模型对某个样本做预测,相比决策树的硬性选择,要有很多优势。

本章主要介绍了这几种混合模型。讲之前,先明确一下混合模型与Bayesian model averaging的区别,贝叶斯模型平均是这样的:假设有H个不同模型h,每个模型的先验概率是p(h),一个数据集的分布是:
整个数据集X是由一个模型生成的,关于h的概率仅仅表示是由哪个模型来生成的 这件事的不确定性。而本章要讲的混合模型是数据集中,不同的数据点可能由不同模型生成。看后面讲到的内容就明白了。
继续阅读

PRML读书会第十三章 Sequential Data

Deep Learning Specialization on Coursera

PRML读书会第十三章 Sequential Data

主讲人 张巍

(新浪微博: @张巍_ISCAS

软件所-张巍<zh3f@qq.com> 19:01:27
我们开始吧,十三章是关于序列数据,现实中很多数据是有前后关系的,例如语音或者DNA序列,例子就不多举了,对于这类数据我们很自然会想到用马尔科夫链来建模:

例如直接假设观测数据之间服从一阶马尔科夫链,这个假设显然太简单了,因为很多数据时明显有高阶相关性的,一个解决方法是用高阶马尔科夫链建模:

但这样并不能完全解决问题 :1、高阶马尔科夫模型参数太多;2、数据间的相关性仍然受阶数限制。一个好的解决方法,是引入一层隐变量,建立如下的模型:

继续阅读

PRML读书会第十二章 Continuous Latent Variables

Deep Learning Specialization on Coursera

PRML读书会第十二章 Continuous Latent Variables

主讲人 戴玮

(新浪微博: @戴玮_CASIA

Wilbur_中博(1954123) 20:00:49

我今天讲PRML的第十二章,连续隐变量。既然有连续隐变量,一定也有离散隐变量,那么离散隐变量是什么?我们可能还记得之前尼采兄讲过的9.2节的高斯混合模型。它有一个K维二值隐变量z,不仅只能取0-1两个值,而且K维中只能有1维为1、其他维必须为0,表示我们观察到的x属于K类中的哪一类。显然,这里的隐变量z就是个离散隐变量。不过我们容易想到,隐变量未必像kmeans或GMM这种聚类算法那样,非此即彼、非白即黑,我们当然也可能在各个聚类或组成成分之间连续变化。而且很多情况下,连续变化都是更合理、更容易推广的。所以,我们这一章引入了连续隐变量。
书中举了一个例子:从某张特定的手写数字图像,通过平移和旋转变换生成多张图像。虽然我们观察到的是整个图像像素的一个高维数据空间中的样本,但实际上只是由平移和旋转这三个隐变量产生的,这里的平移和旋转就是连续隐变量。还举了个石油流量的例子,是从两个隐变量经过测量得到12个观察变量,那里的两个隐变量也是连续的。 一般来说,样本不会精确处在由隐变量表示的低维流形上,而是可能稍有偏差,这种偏差可视作噪声。噪声的来源各种各样,不是我们能把握的,一般只能统一把它们看成单一的噪声项来处理。
最简单的情况下,我们可以把隐变量和观察变量都假设为高斯分布,并且利用2.3.1讲过的条件分布与边缘分布之间的线性高斯关系,来建立观察变量与隐变量之间的线性模型。这样,我们就可以建立主成分分析(PCA)以及与之相关的因子分析(FA)的概率模型。不过在此之前,我们还是看看传统视角是如何处理主成分分析的:
继续阅读