分类目录归档:自然语言处理

腾讯词向量实战:通过Annoy进行索引和快速查询

上周《玩转腾讯词向量:词语相似度计算和在线查询》推出后,有同学提到了annoy,我其实并没有用annoy,不过对annoy很感兴趣,所以决定用annoy试一下腾讯 AI Lab 词向量

学习一个东西最直接的方法就是从官方文档走起:https://github.com/spotify/annoy , Annoy是Spotify开源的一个用于近似最近邻查询的C++/Python工具,对内存使用进行了优化,索引可以在硬盘保存或者加载:Approximate Nearest Neighbors in C++/Python optimized for memory usage and loading/saving to disk。

Annoy (Approximate Nearest Neighbors Oh Yeah) is a C++ library with Python bindings to search for points in space that are close to a given query point. It also creates large read-only file-based data structures that are mmapped into memory so that many processes may share the same data.

照着官方文档,我在自己的机器上进行了简单的测试(Ubuntu16.04, 48G内存, Python2.7, gensim 3.6.0, annoy, 1.15.2),以下是Annoy初探。

安装annoy很简单,在virtuenv虚拟环境中直接:pip install annoy,然后大概可以按着官方文档体验一下最简单的case了:

In [1]: import random
 
In [2]: from annoy import AnnoyIndex
 
# f是向量维度
In [3]: f = 20
 
In [4]: t = AnnoyIndex(f)
 
In [5]: for i in xrange(100):
   ...:     v = [random.gauss(0, 1) for z in xrange(f)]
   ...:     t.add_item(i, v)
   ...:     
 
In [6]: t.build(10)
Out[6]: True
 
In [7]: t.save('test.ann.index')
Out[7]: True
 
In [8]: print(t.get_nns_by_item(0, 10))
[0, 45, 16, 17, 61, 24, 48, 20, 29, 84]
 
# 此处测试从硬盘盘索引加载
In [10]: u = AnnoyIndex(f)
 
In [11]: u.load('test.ann.index')
Out[11]: True
 
In [12]: print(u.get_nns_by_item(0, 10))
[0, 45, 16, 17, 61, 24, 48, 20, 29, 84]

看起来还是比较方便的,那么Annoy有用吗? 非常有用,特别是做线上服务的时候,现在有很多Object2Vector, 无论这个Object是Word, Document, User, Item, Anything, 当这些对象被映射到向量空间后,能够快速实时的查找它的最近邻就非常有意义了,Annoy诞生于Spotify的Hack Week,之后被用于Sptify的音乐推荐系统,这是它的诞生背景:
继续阅读

Start your future on Coursera today.

算法工程师需不需要架构思维-许式伟首次完整架构经验分享

做算法的同学需不需要架构思维?个人觉得非常需要,特别是工作了几年之后,无论是广告系统,推荐系统,还是问答(对话)系统,机器翻译系统,都需要系统架构思维,特别是近期,在斯坦福举行的新学术会议SysML发布了一份白皮书,确定了 机器学习+系统 这个新方向:Machine Learning System(机器学习系统),这大概就是大势所趋吧。

最近,看到七牛云老大许式伟在极客时间开了个专栏讲「架构」http://gk.link/a/102Yh ,首次进行完整的架构经验分享。上线仅三天,订阅就破 W 了,真没想到像老许这种资历和背景的架构师,竟然还这么乐于输出。他应该是为数不多的,能把「架构」这事儿讲明白的人了。所以这次,我心动并且行动了。

看了开篇词,写得很朴实,没有什么商业的辞藻,结合自己的实战经历,非常落地的感觉,不论你已经是一位架构师,还是想成为架构师的程序员,通过这个专栏,你能收获的都比付出的更多。

这个专栏,是老许第一次完整系统地分享自己的架构经验,一个架构师 20 年的经验沉淀,实在难得。几年后,你会感谢自己今天的投资:许式伟的架构课-从源头出发,带你重新理解架构设计
继续阅读

Start your future on Coursera today.

玩转腾讯词向量:词语相似度计算和在线查询

先讲一个故事,自从《相似词查询:玩转腾讯 AI Lab 中文词向量》发布后,AINLP公众号后台查询相似词的信息还是蛮多的。前段时间的一天,发现一个女生id频繁的查询相似词,近乎每分钟都在操作(这里要说明一下,腾讯公众号后台是可以看到用户最近二十条消息记录的,信息会保留5天)。然后第二天这个id依然很规律的在查询相似词,作为偶尔玩玩爬虫、也弄弄网站的程序员,第一反应会不会是程序模拟操作,但是观察下来虽然很规律, 查询频率不像是机器所为,另外貌似到了晚上10点之后这个id就停止查询了。然后到了第3天,依然发现这个id在查询,所以我没有忍住,回复了一句:请确认是否是人工查询?如果这个id没有反馈,依然我行我素的查询,我可能就准备拉黑这个id了。但是她很快回复了一句:是人工查询;我有点好奇的追问了一句:为什么不通过程序直接加载和查询腾讯词向量呢?岂不更方便。她回复:不懂程序,不会,然后大概追加了一句:我在做一个课程设计,需要积攒一批相似词,所以通过AINLP公众号这个功能手动查询了一批词,抱歉带来困扰,感谢背后的程序员。

这个回复让我突然有一种释然,也很开心,觉得做了一件有意义的事情,在52nlp微博的简介里,有两句话:Make something people want; A blog for fools written by fools。第一句话“Make something people want”, 大概就是做用户想用或者有用的东西,这句话我忘了什么时候看到的,因为它触动了我,所以记录在微博简介里了,不过google后发现是硅谷孵化器YC的“口头禅”。

关于word2vec词语相似度,这里早期写过几篇相关的文章:《中英文维基百科语料上的Word2Vec实验》、《维基百科语料中的词语相似度探索》,《相似词查询:玩转腾讯 AI Lab 中文词向量》对于熟悉word2vec,熟悉gensim的同学来说,使用这份腾讯AI Lab的词向量其实很简单,只要有个内存大一些的机器(实际加载后貌似用了12G左右的内存),大概就可以通过几行python代码进行查询了:

from gensim.models.word2vec import KeyedVectors
wv_from_text = KeyedVectors.load_word2vec_format(file, binary=False)

但是这个世界大家并不都是程序员,即使是程序员也有很多同学不了解word2vec, 不知道gensim,所以这个word2vec相似词在线查询功能突然变得有点意思,有那么一点用了。其实,当时给AINLP后台聊天机器人加这个技能点的时候,还想过是否有用或者有必要,不过,经历了开头这件事,并且发现后台有越来越多不同领域查询词的时候,我能感知这件事还是很有意义的,特别对于那些不懂程序的同学来说。不过关于这份腾讯词向量相似词在线查询接口,虽然借助了gensim,但是在线服务的时候并不是基于gensim,用了一些trick,对于高并发也没有太多压力,所以对于开头这个小姑娘的持续查询操作,并不介意,还很欢迎,我介意的是机器恶意查询。

当然,还是有很多同学熟悉词向量,熟悉word2vec,也熟悉gensim的接口,所以发现有部分同学很自然的加了查询操作:相似度 词1 词2,期待AINLP后台相似词查询功能能给出两个值词语相似度,这个需求还是很自然的,所以昨晚,我花了一点时间,把这个接口也加上了,感兴趣的同学可以关注AINLP公众号:

然后后台对话操作,例如这样,选择计算AI和人工智能的相似度,AI和NLP的相似度:


继续阅读

Start your future on Coursera today.

FlyAI算法竞赛平台初体验

前几天在AINLP公众号上分享了国内一个新兴AI算法竞赛平台FlyAIFlyAI算法竞赛:百万现金奖励实时瓜分FlyAI算法竞赛平台比较有意思的一点是可以实时分享相关赛道的奖金池,另外完全使用FlyAI官方的GPU资源在线训练模型和提交结果,这一点,对于没有GPU条件的同学来说也是很有吸引力的。

关于文本挖掘或者计算机视觉相关的AI数据竞赛,我觉得如果没有很好的实习机会,参加一些这样的比赛是可以积攒一定的实战经验的,赛事官方一般会为每个任务准备一套baseline流程来熟悉平台和任务,这也是一个很好的学习机会。我之前通过AIChallenger的中英机器翻译比赛熟悉了NMT的整套流程和相关工具和算法,感兴趣的同学可以参考:《AI Challenger 2017 奇遇记》 和 《AI Challenger 2018 简记》。

关于FlyAI算法竞赛平台,官方是这样介绍的:

FlyAI 是隶属于北京智能工场科技有限公司旗下,为AI开发者 (深度学习)提供数据竞赛并支持GPU离线训练的一站式服务平台。每周免费提供项目开源算法样例,样例所使用开发框架涉及TensorFlow、Keras、PyTorch. 支持算法能力变现以及快速的迭代算法模型。挑战者,都在FlyAI!

四大特点:

1. 高质量的数据集、多领域的开源项目案例

1.1 项目涉及领域:自然语言处理、图像识别、语音识别等

1.2 每周更新高质量项目专属代码样例,免费下载查看

1.3 支持多平台运行,一键配置学习环境

2 多卡GPU资源 一键使用

2.1 提供强大算力,快速迭代模型质量

2.2 一键提交离线训练服务,及时通知模型训练进度

3 能力变现、竞赛式项目实力打榜

3.1 挑战项目刷新排行榜,赢得高额悬赏

3.2 使用不同深度学习框架验证,提升自己的算法能力

4 全行业的数据化及AI需求发布平台

4.1 通过算法众包,建立精准的预测模型,为产品数据增长赋能

4.2 探索数据人才与企业需求的生态构建

FlyAI上目前的自然语言处理相关竞赛不是太多,不过官方表态会不断上新,感兴趣的同学可以密切关注。目前FlyAI上NLP相关的竞赛包括:搜狗新闻文本分类预测、美国点评网站Yelp评价预测赛、测测星座文本分类、根据商品评分推荐商品算法练习赛、人工智能和你对对联。前三个有实际的奖金、后两个是练习赛,奖励FAI积分,这个可用于平台上GPU训练资源消耗,不过目前如果你通过这里AINLP的专属链接(https://www.flyai.com/?s=u9Fn9rW4f)注册并且加入到FlyAI竞赛-AINLP官方群,是可以直接找FlyAI小姐姐要积分的,目前该群接近300人,里面有官方技术人员答疑,已无法通过直接扫码加入,加群前请通过AINLP专属链接注册,然后添加AINLP君(id: AINLP2)拉你入群,请务必注明FlyAI:

https://www.flyai.com/?s=u9Fn9rW4f
继续阅读

Start your future on Coursera today.

夸夸聊天机器人升级:从随机到准个性化

来,你们要的夸夸聊天机器人升级了,针对问题内容进行“准个性化”回答,目前可以凑合用,但是聊胜于无,欢迎来撩,使用方法,关注公众号AINLP,后台对话即可:

自从《一行Python代码实现夸夸聊天机器人》发布后,有不少同学期待着夸夸聊天机器人的升级。但是巧妇难为无米之炊,所以我准备了夸夸语料库:《为了夸夸聊天机器人,爬了一份夸夸语料库》。有了夸夸问答语料之后,针对聊天机器人或者智能问答就有很多方法可以操作,最直接的一个想法就是计算问题与夸夸语料库中的标题(以及内容)的语义相似度,然后取最匹配问题的答案作为结果返回。

我大概就是是这样操作的,首先对语料库进行了简单的清洗和重组,清洗掉没有答案的,以及作者自己回答的答案,然后将每个问题的答案组合为list作为随机答案。不过更直接一些,只计算问题和标题的相似度,按一定的阈值进行过滤,所以这个版本,还存在很多问题,大家先凑合着用,后续还有升级计划。

这方面比较关键的一个问题就是相似问题匹配或者句子语义相似度计算。关于文本相似度,词语或者短语级别的语义相似度在词向量范畴下解决的很漂亮,感兴趣的同学可以体验:《相似词查询:玩转腾讯 AI Lab 中文词向量》,但是到了句子级别或者文档级别,目前貌似还没有很漂亮的解决方案,或者我调研的不够,有线索的同学欢迎留言探讨。

最后关于如何使用这个夸夸聊天机器人,首先关注我们的公众号AINLP,然后后台和聊天机器人对话即可,不过需要一些关键字触发夸夸模式,譬如“。。。求夸。。”, “。。。求赞。。”, “。。。,求鼓励”, “。。。, 求表扬”, 或者 “。。夸我。。。。”, “。。。鼓励我。。。”等等,否则进入闲聊模式。关于聊天机器人,目前希望大家不要抱太高的期望,把它当傻子即可:

聊天过程中如果问题没有匹配上或者过于简单,会回退到随机模式:

当然,这里选的case一定是准备过的,还有一些bad case没有给你们看,欢迎测试,欢迎建议,特别是如何匹配问题域的建议,非常欢迎。
继续阅读

Start your future on Coursera today.

在NLP领域中文对比英文的难点分析 (达观数据 陈运文)

作者:达观数据创始人  陈运文

人类经过漫长的历史发展,在世界各地形成了很多不同的语言分支,其中汉藏语系印欧语系是使用人数最多的两支。英语是印欧语系的代表,而汉语则是汉藏语系的代表。中英文语言的差异十分鲜明,英语以表音(字音)构成,汉语以表义(字形)构成,印欧和汉藏两大语系有很大的区别。

尽管全世界语言多达5600种,但大部数人类使用的语言集中在图中的前15种(覆盖全球90%以上人群)。其中英语为母语和第二语的人数最多,近14亿人,是事实上的世界通用语。其次是汉语,约占世界人口的23%。英语和汉语相加的人数占世界总人数的近一半,因此处理中英文两种语言非常关键。

人工智能时代,让计算机自动化进行文字语义理解非常重要,广泛应用于社会的方方面面,而语言本身的复杂性又给计算机技术带来了很大的挑战,攻克文本语义对实现AI全面应用有至关重要的意义。相应的自然语言处理(Natural Language Processing,NLP技术因而被称为是“人工智能皇冠上的明珠”。

中国和美国作为AI应用的两个世界大国,在各自语言的自动化处理方面有一些独特之处。接下来笔者对中文和英文语言特点的角度出发,结合自己的从业经验来归纳下两种语言下NLP的异同点。(达观数据陈运文)
继续阅读

Start your future on Coursera today.

中文分词文章索引和分词数据资源分享

昨天在AINLP公众号上分享了乐雨泉同学的投稿文章:《分词那些事儿》,有同学留言表示"不过瘾",我想了想,其实我爱自然语言处理博客上已经积攒了不少中文分词的文章,除了基于深度学习的分词方法还没有探讨外,“古典”机器学习时代的中文分词方法都有涉及,从基于词典的中文分词(最大匹配法),到基于统计的分词方法(HMM、最大熵模型、条件随机场模型CRF),再到Mecab、NLTK中文分词,都有所涉及。回头看,这些文章最早的大概有10年了,现在看有些稚嫩,可能不适宜再放到公众号上推了,但是这里做个索引,感兴趣的同学可以在博客上阅读,基本上都是有代码可以参考的。

中文分词入门系列

rickjin老大的两篇日文翻译文档,很有帮助

其他同学在52nlp博客上分享的中文分词相关文章,感谢大家

最后关于中文分词的数据资源,多说两句,中文分词的研究时间比较长,方法比较多,从实际经验看,好的词库资源可能更重要一些,最后提供一份中文分词的相关资源,包括中文分词字标注法全文pdf文档,以及web上其他同学分享的词库资源,感兴趣的同学可以关注AINLP,回复“fenci"获取:

注:原创文章,转载请注明出处及保留链接“我爱自然语言处理”:http://www.52nlp.cn

本文链接地址:中文分词文章索引和分词数据资源分享 http://www.52nlp.cn/?p=11408

Start your future on Coursera today.

你是如何了解或者进入NLP这个领域的?

每个NLPer都有自己的故事,每个故事都很精彩!

前两天在AINLP公众号上做了一期赠书活动:8本NLP书籍任你选,发起了一个话题留言活动:你是如何了解或者进入NLP这个领域的?没想到,活动发布后,大家参与的热情极高,收到了200多条留言,但是限于微信公众号留言只能精选100条放出,所以有些遗憾,很多后来的同学的留言虽然写得很好,但是没有办法放出来了。今天是周末,我又认真的从前到后读了一遍,感慨每个人都有自己的NLP故事,这里做一次汇总,尽量把留言都放出来,就不一一回复了,感谢大家的支持与参与。

从留言来看,很多同学是读书或者在实验室的时候“偶然”入了NLP这行,和很多同学一样,我也是读书时误打误撞进入了这个领域,我本身读得是数学系,研究生读得是自动化系模式识别与智能系统专业,实验室有好几个方向,刚好一个方向是统计机器翻译,老师觉得数学系的背景适合这个,就安排我做这个方向了,所以很感谢老师当年的安排,让我和NLP结缘。最后再留一个话题,感兴趣的同学可以参与:你做的第一个NLP任务或者课题是什么?

另外这次赠书活动原计划从留言中选择4名同学赠书,但是大家参与活动的积极性太高,让人感动的留言不少,所以综合大家的留言内容、关注的时间、互动的频率等各个因素,我额外再赠送6本书给参与活动的同学,但是依然僧多肉少,请没有获奖的同学见谅,以后还有机会,大家先混个脸熟。请以下10名的同学直接添加微信AINLP2选择书籍和留收件信息:

C.S. , 意犹未尽, 迷糊s啦, 锐, 少女情怀总是诗, 璐璐, 黄金金, Mr.NLP, 瓜子, 川上月

其中瓜子同学作为20考研党代表和求赞第一名,这里送个祝福;川上月同学是博客、微博以及公众号的老读者,也投过稿,这里作为老读者代表,送个感谢。另外赠书活动昨晚已经抽奖完毕,大家可查看中奖结果,请以下4名同学也请一并添加微信AINLP2,留相关信息:

Emotion. , 发局, Null, cf

另外我们还在微博举行了同样的抽奖活动,感兴趣的同学依然可以移步参与,活动到下周四结束。

https://weibo.com/2104931705/HlW4Q2XNK

以下选自各位NLPer的留言,再次感谢大家。
继续阅读

Start your future on Coursera today.

为了夸夸聊天机器人,爬了一份夸夸语料库

上周为了娱乐,写了一篇《一行Python代码实现夸夸聊天机器人》,虽然只有几十条人工整理的通用夸夸语料,但是貌似也能应付一些简单需求。不过这篇文章在微博、AINLP微信公众号、知乎专栏推送后,还是有很多同学强烈建议丰富语料库。这个建议其实是很不错的,所以周末认真调研了一番,决定从豆瓣上的夸夸小组入手,这里面有很多现成的语料,至于混进微信、QQ夸夸群,收集语料,我觉得不太现实。

豆瓣上有很多夸夸小组,貌似最大的莫过于“相互表扬小组”,最近因为这股夸夸风,据说这个小组已经开始限制加入新人了,我针对这个小组写了一个小爬虫,爬了一份夸夸语料,总计2万6千多个帖子,采集了标题、内容和回复的相关信息,保存为json格式,1个帖子1条,大概是这样的:

{"title": "因为没有男朋友,求夸", "url": "https://www.douban.com/group/topic/135844056/", "author": "71277500", "last_reply_time": "03-17 16:40", "content": "笨人原本一个人好好的,都单了两三年了,一直觉得挺开心的。最近不知道抽了什么风,突然特别想找个男朋友。但是但是,偏偏找不到靠谱的男朋友!现在一个人睡不着,没想明白这事,求夸。\n", "replies_num": "14", "replies": [{"content": "你这么可爱肯定会有一个很好很好的人在等你!", "post_id": "135844056", "comment_id": "1834208628", "user_id": "189783421", "pub_time": "2019-03-16 01:08:38"}, {"content": "最好的肯定要晚点出现哦", "post_id": "135844056", "comment_id": "1834208775", "user_id": "189783421", "pub_time": "2019-03-16 01:08:52"}, {"content": "“笨人”,刚看到开头就笑了", "post_id": "135844056", "comment_id": "1834282396", "user_id": "192799520", "pub_time": "2019-03-16 07:50:50"}, {"content": "一个好可耐的宝宝", "post_id": "135844056", "comment_id": "1834282931", "user_id": "192799520", "pub_time": "2019-03-16 07:52:24"}, {"content": "也许明天就出现了", "post_id": "135844056", "comment_id": "1834290527", "user_id": "185989534", "pub_time": "2019-03-16 08:11:38"}, {"content": "你知道有一个适合你的那个在等你吧", "post_id": "135844056", "comment_id": "1834308924", "user_id": "192597621", "pub_time": "2019-03-16 08:46:23"}, {"content": "如果没有男朋友,肯定是你太优秀", "post_id": "135844056", "comment_id": "1834313229", "user_id": "171520899", "pub_time": "2019-03-16 08:53:19"}, {"content": "没有男朋友多好,省钱", "post_id": "135844056", "comment_id": "1834320533", "user_id": "130379006", "pub_time": "2019-03-16 09:03:42"}, {"content": "哈哈,谢谢好可爱的你呀!", "post_id": "135844056", "comment_id": "1835717925", "user_id": "71277500", "pub_time": "2019-03-17 16:16:58"}, {"content": "有道理", "post_id": "135844056", "comment_id": "1835718260", "user_id": "71277500", "pub_time": "2019-03-17 16:17:22"}, {"content": "也许吧,哈哈哈", "post_id": "135844056", "comment_id": "1835718395", "user_id": "71277500", "pub_time": "2019-03-17 16:17:32"}, {"content": "原本想写本人,一不小心错别字,看样子还是很符合的", "post_id": "135844056", "comment_id": "1835719069", "user_id": "71277500", "pub_time": "2019-03-17 16:18:17"}, {"content": "没有,只是单纯地觉得很可爱,很符合你写一段话的文风😄ཽ……退一步讲,古人讲究谦辞,称呼自己要自谦,本人要说鄙人,你用“笨人”活泼可爱,也能称得上是一种自谦,还是你自创的,有趣", "post_id": "135844056", "comment_id": "1835734308", "user_id": "192799520", "pub_time": "2019-03-17 16:35:21"}, {"content": "哈哈,有道理,我懂了", "post_id": "135844056", "comment_id": "1835738373", "user_id": "71277500", "pub_time": "2019-03-17 16:40:00"}]}

写到这里,估计还是会有同学准备留言索要数据了,因为即使上次区区几十条语料,随便google一下就可以得到的“夸夸语料”都有同学留言索取,所以这里准备多说几句,关于夸夸聊天机器人,关于夸夸语料库。

上个周,在看到清华刘知远老师的评论后,我是用娱乐的心态写了上周的那篇文章:《一行Python代码实现夸夸聊天机器人》,没想到,反响还不错,甚至有一些同学提了很好的建议。所以当周末认真思考这件事的可行性时,突然觉得,夸夸聊天机器人是一个绝好的机器学习实践项目:仅从一个idea出发,怎样做一个不错的夸夸聊天机器人?

作为自然语言处理四大难题之一的自动问答,个人觉得目前还远远不够“智能”,虽然市面上有很多聊天机器人,但是观察来看,以娱乐的心态来对话是可以的,或者完成一些简单的任务是没有问题的,例如询问天气,但是如果抱着很高的期望,很多轮对话下来,基本可以认为这个聊天机器人“不靠谱”, “答非所问”,甚至是个“智障”。虽然通用领域的智能问答或者聊天机器人还有很长的路要走,但是如果把这个问题限定在垂直领域或者很小的需求范围,那么问题可能就有解了,例如夸夸聊天机器人,需求就很简单:做啥都夸。简单的就是随便夸,复杂一点或者个性化的就是夸某个点、某件事、某个人,前者吗,就是上次《一行Python代码实现夸夸聊天机器人》做得事情,准备一些通用夸奖的语料,然后随机夸;后者,需要准备一些夸夸规则和夸夸语料库。

开个玩笑,二十一世纪什么最贵?当然是数据了,确切的说,是面向特定任务的特定数据。现在不缺机器学习框架,不缺算法,不缺机器,甚至不缺“人”,缺什么,就缺数据。这段时间,因为夸夸群的兴起,很多人看到了商机,说不定哪一天你的老板把你找来,直接给扔给你一个任务:做一个夸夸聊天机器人?怎么办,当然要调研啦。花了大半天时间,你了解了聊天机器人的前世今生,发现了人工智能标记语言AIML,知道了Chatbot的种种玩法,基于规则的、基于机器学习模型的、基于知识图谱的等等等等,甚至还有很多智能问答开源框架可以直接套用,最后,当你兴高采烈的准备动手实践的时候,你突然发现,还没有数据,你需要数据,需要夸夸语料库。
继续阅读

Start your future on Coursera today.

2019斯坦福CS224n深度学习自然语言处理课程视频和相关资料分享

斯坦福大学2019年新一季的CS224n深度学习自然语言处理课程(CS224n: Natural Language Processing with Deep Learning-Stanford/Winter 2019)1月份已经开课,不过视频资源一直没有对外放出,直到前几天官方在油管上更新了前5节视频:CS224n: Natural Language Processing with Deep Learning | Winter 2019

这门自然语言处理课程是值得每个NLPer学习的NLP课程,由 Christopher Manning 大神坐镇主讲,面向斯坦福大学的学生,在斯坦福大学已经讲授很多年。此次2019年新课,有很多更新,除了增加一些新内容外,最大的一点大概是代码由Tensorflow迁移到PyTorch:

这几年,由于深度学习、人工智能的概念的普及和推广,NLP作为AI领域的一颗明珠也逐渐广为人知,很多同学由此进入这个领域或者转行进入这个领域。Manning大神在第一堂课的视频开头之处给学生找位子(大概还有很多同学站着),同时开玩笑的说他在斯坦福大学讲授自然语言处理课程的第一个十年,平均每次选课的学生大约只有45个。

这门课程的主要目标是希望学生:能学到现代深度学习相关知识,特别是和NLP相关的一些知识点;能从宏观上了解人类语言以及理解和产生人类语言的难度;能理解和用代码(PyTorch)实习NLP中的一些主要问题和人物,例如词义理解、依存句法分析、机器翻译、问答系统等。

关于课程视频,目前官方只放出了前5节课程视频,我下载了一份放到了百度网盘里,感兴趣的同学可以关注AINLP,回复"cs224n"获取,这份视频会持续更新,直到完整版,欢迎关注:


继续阅读

Start your future on Coursera today.