标签归档:词性标注

HMM在自然语言处理中的应用一:词性标注2

Deep Learning Specialization on Coursera

  上一节我们对自然语言处理中词性标注的基本问题进行了描述,从本节开始我们将详细介绍HMM与词性标注的关系以及如何利用HMM进行词性标注。首先回顾一下隐马尔科夫模型(HMM)的定义和三大基本问题,并由此与词性标注的基本问题进行一个对比。 继续阅读

最大熵模型文献阅读指南

Deep Learning Specialization on Coursera

  最大熵模型(Maximum Entropy Model)是一种机器学习方法,在自然语言处理的许多领域(如词性标注、中文分词、句子边界识别、浅层句法分析及文本分类等)都有比较好的应用效果。张乐博士的最大熵模型工具包manual里有“Further Reading”,写得不错,就放到这里作为最大熵模型文献阅读指南了。 继续阅读

HMM在自然语言处理中的应用一:词性标注1

Deep Learning Specialization on Coursera

  词性标注(Part-of-Speech tagging 或 POS tagging)是指对于句子中的每个词都指派一个合适的词性,也就是要确定每个词是名词、动词、形容词或其他词性的过程,又称词类标注或者简称标注。词性标注是自然语言处理中的一项基础任务,在语音识别、信息检索及自然语言处理的许多领域都发挥着重要的作用。因此,在关于自然语言处理的书籍中,都会将词性标注单列一章重点讲解,对此有兴趣的读者可参考《自然语言处理综论》第一版第8章或《统计自然语言处理基础》第10章,本文部分内容也参考自这两本自然语言处理的经典书籍。 继续阅读

HMM学习最佳范例八:总结

Deep Learning Specialization on Coursera

八、总结(Summary)

  通常,模式并不是单独的出现,而是作为时间序列中的一个部分——这个过程有时候可以被辅助用来对它们进行识别。在基于时间的进程中,通常都会使用一些假设——一个最常用的假设是进程的状态只依赖于前面N个状态——这样我们就有了一个N阶马尔科夫模型。最简单的例子是N = 1。 继续阅读

HMM学习最佳范例四:隐马尔科夫模型

Deep Learning Specialization on Coursera

四、隐马尔科夫模型(Hidden Markov Models)

1、定义(Definition of a hidden Markov model)
  一个隐马尔科夫模型是一个三元组(pi, A, B)。 继续阅读