标签归档:NLTK Book

推荐两份NLP读书笔记和一份NLTK书籍代码中文注释版

推荐一下AINLP技术交流群里 zYx.tom 同学贡献给大家的两份NLP读书笔记和一份中文注释代码,包括:

《自然语言处理综论》中文版第二版学习笔记

《计算机自然语言处理》学习笔记

《Python自然语言处理》学习代码的中文注释版本:NLTK-Python-CN

作者博客:https://zhuyuanxiang.github.io/

由作者授权,我把2份pdf文件放到github上了,感兴趣的同学可以直接在github上下载:

https://github.com/panyang/AINLP-Resource/tree/master/zYx.Tom

自然语言处理综论》是NLP领域的经典著作,第一版、第二版国内都有中文翻译版,目前英文版第三版《Speech and Language Processing (3rd ed. draft)》正在撰写中,已完结的章节草稿可以直接从slp3官网下载:https://web.stanford.edu/~jurafsky/slp3/ ,加了很多深度学习自然语言处理的相关章节,这里引用李纪为博士《初入NLP领域的一些小建议》中的一段描述,供计划学习这本书的同学参考:

了解NLP的最基本知识:Jurafsky和Martin的Speech and Language Processing是领域内的经典教材,里面包含了NLP的基础知识、语言学扫盲知识、基本任务以及解决思路。阅读此书会接触到很多NLP的最基本任务和知识,比如tagging, 各种parsing,coreference, semantic role labeling等等等等。这对于全局地了解NLP领域有着极其重要的意义。书里面的知识并不需要烂熟于心,但是刷上一两遍,起码对于NLP任务有基本认识,下次遇到了知道去哪里找还是非常有意义的。

《计算机自然语言处理》是哈工大王晓龙、关毅两位老师的中文NLP著作,我在刚入门NLP的时候读过,但是已经很久了,这本书在我早期的博文里记述过:《几本自然语言处理入门书》,唯一的印象就是第一次了解到本科母校HIT在中文NLP领域是非常厉害的。这本书貌似已经无法在电商网站买到,感兴趣的同学可以看看zYx.Tom同学的学习笔记。

NLTK是经典的Python NLP工具包,配套的书籍《Natural Language Processing with Python》目前也有了中文翻译版本,感兴趣的同学可以参考zYx.Tom同学的这份《Python自然语言处理》学习代码的中文注释版本:NLTK-Python-CN

最后,欢迎大家关注AINLP公众号,加入AINLP技术交流群,一起维护一个NLP技术交流环境。

Python自然语言处理工具NLTK学习导引及相关资料

NLTK 大概是最知名的Python自然语言处理工具了,全称"Natural Language Toolkit", 诞生于宾夕法尼亚大学,以研究和教学为目的而生,因此也特别适合入门学习。NLTK虽然主要面向英文,但是它的很多NLP模型或者模块是语言无关的,因此如果某种语言有了初步的Tokenization或者分词,NLTK的很多工具包是可以复用的。

关于NLTK,网上已经有了很多介绍资料,当然首推的NLTK学习资料依然是官方出的在线书籍 NLTK Book:Natural Language Processing with Python – Analyzing Text with the Natural Language Toolkit ,目前基于Python 3 和 NLTK 3 ,可以在线免费阅读和学习。早期的时候还有一个基于Python 2 的老版本:http://www.nltk.org/book_1ed/ ,被 O'Reilly 正式出版过,2012年的时候,国内的陈涛同学无偿翻译过一个中文版,我还在这里推荐过:推荐《用Python进行自然语言处理》中文翻译-NLTK配套书 ,后来才有了基于此版本的更正式的中文翻译版:《Python自然语言处理》。不过如果英文ok的话,优先推荐看目前官方的最新版本:http://www.nltk.org/book/

几年前我尝试写英文博客,觉得可以从NLTK的入门介绍开始,所以写了一个英文系列:Dive into NLTK,基于Python 2,感兴趣的同学可以关注:

Part I: Getting Started with NLTK
Part II: Sentence Tokenize and Word Tokenize
Part III: Part-Of-Speech Tagging and POS Tagger
Part IV: Stemming and Lemmatization
Part V: Using Stanford Text Analysis Tools in Python
Part VI: Add Stanford Word Segmenter Interface for Python NLTK
Part VII: A Preliminary Study on Text Classification
Part VIII: Using External Maximum Entropy Modeling Libraries for Text Classification
Part IX: From Text Classification to Sentiment Analysis
Part X: Play With Word2Vec Models based on NLTK Corpus
Part XI: From Word2Vec to WordNet

这个过程中使用了NLTK中嵌入的斯坦福大学文本分析工具包,发现少了斯坦福中文分词器,所以当时动手加了一个:Python自然语言处理实践: 在NLTK中使用斯坦福中文分词器

斯坦福大学自然语言处理组是世界知名的NLP研究小组,他们提供了一系列开源的Java文本分析工具,包括分词器(Word Segmenter),词性标注工具(Part-Of-Speech Tagger),命名实体识别工具(Named Entity Recognizer),句法分析器(Parser)等,可喜的事,他们还为这些工具训练了相应的中文模型,支持中文文本处理。在使用NLTK的过程中,发现当前版本的NLTK已经提供了相应的斯坦福文本处理工具接口,包括词性标注,命名实体识别和句法分析器的接口,不过可惜的是,没有提供分词器的接口。在google无果和阅读了相应的代码后,我决定照猫画虎为NLTK写一个斯坦福中文分词器接口,这样可以方便的在Python中调用斯坦福文本处理工具。

后来,这个版本在 NLTK 3.2 官方版本中被正式引入:stanford_segmenter.py ,我也可以小自豪一下为NLTK做过一点微小的贡献:

使用NLTK来处理中文是很多同学想干的事情,这方面,在NLTK中调用斯坦福大学的中文工具包刚好是一个切入点,关于NLTK中如何使用斯坦福大学工具包进行中文信息处理,推荐两篇文章:

在 NLTK 中使用 Stanford NLP 工具包http://www.zmonster.me/2016/06/08/use-stanford-nlp-package-in-nltk.html

以及白宁超同学的系列文章:

干货!详述Python NLTK下如何使用stanford NLP工具包http://www.cnblogs.com/baiboy/p/nltk1.html

关于NLTK的书籍,其实还有一本很不错:Python Text Processing with NLTK 2.0 Cookbook ,我之前看过这本,不过现在已经更新到Python 3了:Python 3 Text Processing with NLTK 3 Cookbook 。最后提供一个NLTK相关资料的打包下载,包括早期的中文翻译版和这个Cookbook,仅供个人学习使用,感兴趣的同学可以关注我们的公众号: AINLP, 回复'NLTK'获取相关下载链接:

注:原创文章,转载请注明出处及保留链接“我爱自然语言处理”:http://www.52nlp.cn

本文链接地址:Python自然语言处理工具NLTK学习导引及相关资料 http://www.52nlp.cn/?p=11190