标签归档:python

推荐一份中文数据,再试试汉字、词语、成语、歇后语在线检索

前段时间给公众号新增了一个成语接龙功能:AINLP公众号对话接口新增成语接龙,这个里面提到的项目用到了一份成语数据,包含了2万多条成语数据和释义。不过这个数据之外,推荐一个更棒的Github项目:

pwxcoo/chinese-xinhuahttps://github.com/pwxcoo/chinese-xinhua

这个项目收录了收录了 14032 条歇后语,16142 个汉字,264434 个词语,31648 个成语,并且以json格式提供了相关数据,非常方便:

项目结构:

chinese-xinhua/
|
+- data/ <-- 数据文件夹
|  |
|  +- idiom.json <-- 成语
|  |
|  +- word.json <-- 汉字
|  |
|  +- xiehouyu.json <-- 歇后语
|  |
|  +- ci.json <-- 词语

汉字例子:

    {
        "word": "吖",
        "oldword": "吖",
        "strokes": "6",
        "pinyin": "ā",
        "radicals": "口",
        "explanation": "喊叫天~地。\n 形容喊叫的声音高声叫~~。\n\n 吖ā[吖啶黄](-dìnghuáng)〈名〉一种注射剂。\n ────────────────—\n \n 吖yā 1.呼;喊。",
        "more": "吖 a 部首 口 部首笔画 03 总笔画 06  吖2\nyā\n喊,呼喊 [cry]\n不索你没来由这般叫天吖地。--高文秀《黑旋风》\n吖\nyā\n喊声\n则听得巡院家高声的叫吖吖。--张国宾《合汗衫》\n另见ā\n吖1\nā\n--外国语的音译,主要用于有机化学。如吖嗪\n吖啶\nādìng\n[acridine] 一种无色晶状微碱性三环化合物c13h9n,存在于煤焦油的粗蒽馏分中,是制造染料和药物(如吖啶黄素和奎吖因)的重要母体化合物\n吖1\nyā ㄧㄚˉ\n(1)\n喊叫天~地。\n(2)\n形容喊叫的声音高声叫~~。\n郑码jui,u5416,gbkdfb9\n笔画数6,部首口,笔顺编号251432\n吖2\nā ㄚˉ\n叹词,相当于呵”。\n郑码jui,u5416,gbkdfb9\n笔画数6,部首口,笔顺编号251432"
    }

词典例子:

{
    "ci": "总计", 
    "explanation": "1.总共计算。 \n2.犹统计。"}

成语例子:

{
    "derivation": "清·嬴宗季女《六月霜·恤纬》劝夫人省可闲愁绪,足食丰衣无所虑,何况俺爷贵胄都时誉。”", 
    "example": "无", 
    "explanation": "丰衣足食。形容生活富裕。", 
    "pinyin": "zú shí fēng yī", 
    "word": "足食丰衣", "abbreviation": 
    "zsfy"
}

歇后语例子:

   {
        "riddle": "正月十五云遮月",
        "answer": "不露脸"
    },
    {
        "riddle": "正月十五贴门神",
        "answer": "晚了半月"
    },
    {
        "riddle": "正月十五贴春联",
        "answer": "晚了半月了"
    },
    {
        "riddle": "正月十五卖元宵",
        "answer": "抱成团"
    },
    {
        "riddle": "正月十五看花灯",
        "answer": "走着瞧"
    },
    {
        "riddle": "正月十五赶庙会",
        "answer": "随大流"
    }

我把这份数据放到了Elasticsearch里,并且通过ES的Python接口elasticsearch-py提供后端检索服务,现在可以通过AINLP公众号对话接口检索了,感兴趣的同学可以一试,包括:

汉字检索:

词语检索:

成语检索:

歇后语检索:

感兴趣的同学可以关注AINLP公众号,直接公众号对话测试,更多功能可以参考:
一个有趣有AI的NLP公众号

注:原创文章,转载请注明出处及保留链接“我爱自然语言处理”:http://www.52nlp.cn

本文链接地址:推荐一份中文数据,再试试汉字、词语、成语、歇后语在线检索 http://www.52nlp.cn/?p=12087

AINLP公众号新增SnowNLP情感分析模块

上周给AINLP公众号对话增加了百度中文情感分析接口:百度深度学习中文情感分析工具Senta试用及在线测试,很多同学通过公众号对话进行测试,玩得很嗨,不过感觉中文情感分析的成熟工具还是不多。这个周末调研了一下之前用于测试中文分词和词性标注的工具,发现SnowNLP和HanLP提供情感分析的接口,不过后者貌似没有提供Python接口,而SnowNLP作为原生的Python中文自然语言处理工具包,用起来还是比较方便的,唯一的问题是它的训练语料覆盖领域,官方文档是这样说的:

SnowNLP: https://github.com/isnowfy/snownlp

情感分析(现在训练数据主要是买卖东西时的评价,所以对其他的一些可能效果不是很好,待解决)

使用起来也很简单,注意SnowNLP的情感分析只有正向概率,以下测试例子也有bad case:

In [1]: from snownlp import SnowNLP                                            
 
In [2]: s = SnowNLP('我爱自然语言处理')                                        
 
In [3]: s.sentiments                                                           
Out[3]: 0.9243733698974206
 
In [4]: s = SnowNLP('我不爱自然语言处理')                                      
 
In [5]: s.sentiments                                                           
Out[5]: 0.8043511626271524
 
In [6]: s = SnowNLP('太难吃了')                                                
 
In [7]: s.sentiments                                                           
Out[7]: 0.27333037073511146

感兴趣的同学可以直接关注AINLP公众号,直接测试这两个中文情感分析模块:BaiduSenta和SnowNLP


继续阅读

百度深度学习中文情感分析工具Senta试用及在线测试

情感分析是自然语言处理里面一个热门话题,去年参加AI Challenger时关注了一下细粒度情感分析赛道,当时模仿baseline写了一个fasttext版本:AI Challenger 2018 细粒度用户评论情感分析 fastText Baseline ,至今不断有同学在star这个项目:fastText-for-AI-Challenger-Sentiment-Analysis

周末通过PaddleHub试用了一下百度的深度学习中文情感分析工具Senta,还是很方便,于是,将这个作为中文情感分析的一个技能点加入到了AINLP公众号的对话中,感兴趣的同学可以先测试:

至于安装和使用,还是简单说一下,以下是在Ubuntu16.04, Python3.x virtualenv环境下安装和测试。

安装直接通过pip install即可:

pip install paddlepaddle(这里用的是CPU版本)
pip install paddlehub

关于如何使用百度这个中文情感分析工具,最直接的方法还是follow官方demo脚本:

PaddleHub/demo/senta/senta_demo.py

在iPython中大致如下调用:

Python 3.5.2 (default, Nov 12 2018, 13:43:14) 
Type 'copyright', 'credits' or 'license' for more information
IPython 7.5.0 -- An enhanced Interactive Python. Type '?' for help.
 
In [1]: import paddlehub as hub                                                                 
 
In [2]: senta = hub.Module(name="senta_bilstm")                                                 
2019-07-06 22:33:01,181-INFO: Installing senta_bilstm module
2019-07-06 22:33:01,182-INFO: Module senta_bilstm already installed in /home/textminer/.paddlehub/modules/senta_bilstm
 
In [3]: test_text = ["这家餐厅很好吃", "这部电影真的很差劲","我爱自然语言处理"]                
 
In [4]: input_dict = {"text": test_text}                                                        
 
In [5]: results = senta.sentiment_classify(data=input_dict)                                     
2019-07-06 22:33:53,835-INFO: 13 pretrained paramaters loaded by PaddleHub
2019-07-06 22:33:53,839-INFO: 20 pretrained paramaters loaded by PaddleHub
 
In [6]: for result in results: 
   ...:     print(result) 
   ...:                                                                                         
{'positive_probs': 0.9363, 'text': '这家餐厅很好吃', 'sentiment_key': 'positive', 'negative_probs': 0.0637, 'sentiment_label': 2}
{'positive_probs': 0.0213, 'text': '这部电影真的很差劲', 'sentiment_key': 'negative', 'negative_probs': 0.9787, 'sentiment_label': 0}
{'positive_probs': 0.9501, 'text': '我爱自然语言处理', 'sentiment_key': 'positive', 'negative_probs': 0.0499, 'sentiment_label': 2}

继续阅读

百度深度学习中文词法分析工具LAC试用之旅

之前在调研中文分词词性标注相关工具的时候就发现了百度的深度学习中文词法分析工具:baidu/lac(https://github.com/baidu/lac),但是通过这个项目github上的文档描述以及实际动手尝试源码编译安装发现非常繁琐,缺乏通常中文分词工具的易用性,所以第一次接触完百度lac之后就放弃了:

LAC是一个联合的词法分析模型,整体性地完成中文分词、词性标注、专名识别任务。LAC既可以认为是Lexical Analysis of Chinese的首字母缩写,也可以认为是LAC Analyzes Chinese的递归缩写。

LAC基于一个堆叠的双向GRU结构,在长文本上准确复刻了百度AI开放平台上的词法分析算法。效果方面,分词、词性、专名识别的整体准确率95.5%;单独评估专名识别任务,F值87.1%(准确90.3,召回85.4%),总体略优于开放平台版本。在效果优化的基础上,LAC的模型简洁高效,内存开销不到100M,而速度则比百度AI开放平台提高了57%。

本项目依赖Paddle v0.14.0版本。如果您的Paddle安装版本低于此要求,请按照安装文档中的说明更新Paddle安装版本。如果您使用的Paddle是v1.1以后的版本,请使用该项目的分支for_paddle_v1.1。注意,LAC模块中的conf目录下的很多文件是采用git-lfs存储,使用git clone时,需要先安装git-lfs。

为了达到和机器运行环境的最佳匹配,我们建议基于源码编译安装Paddle,后文也将展开讨论一些编译安装的细节。当然,如果您发现符合机器环境的预编译版本在官网发布,也可以尝试直接选用。

最近发现百度将自己的一些自然语言处理工具整合在PaddleNLP下,文档写得相对清楚多了:

PaddleNLP是百度开源的工业级NLP工具与预训练模型集,能够适应全面丰富的NLP任务,方便开发者灵活插拔尝试多种网络结构,并且让应用最快速达到工业级效果。

PaddleNLP完全基于PaddlePaddle Fluid开发,并提供依托于百度百亿级大数据的预训练模型,能够极大地方便NLP研究者和工程师快速应用。使用者可以用PaddleNLP快速实现文本分类、文本匹配、序列标注、阅读理解、智能对话等NLP任务的组网、建模和部署,而且可以直接使用百度开源工业级预训练模型进行快速应用。用户在极大地减少研究和开发成本的同时,也可以获得更好的基于工业实践的应用效果。

继续阅读

Python 和 Elasticsearch 构建简易搜索

1 ES基本介绍

概念介绍

Elasticsearch是一个基于Lucene库的搜索引擎。它提供了一个分布式、支持多租户的全文搜索引擎,它可以快速地储存、搜索和分析海量数据。Elasticsearch可以用于搜索各种文档。它提供可扩展的搜索,具有接近实时的搜索,并支持多租户。Elasticsearch至少需要Java 8。Elasticsearch是分布式的,这意味着索引可以被分成分片,每个分片可以有0个或多个副本。每个节点托管一个或多个分片,并充当协调器将操作委托给正确的分片。相关数据通常存储在同一个索引中,该索引由一个或多个主分片和零个或多个复制分片组成。一旦创建了索引,就不能更改主分片的数量。

继续阅读

Docker 部署Python项目

Docker 部署Python项目

导读: 软件开发最大的麻烦事之一就是环境配置,操作系统设置,各种库和组件的安装。只有它们都正确,软件才能运行。如果从一种操作系统里面运行另一种操作系统,通常我们采取的策略就是引入虚拟机,比如在 Windows 系统里面运行 Linux 系统。这种方式有个很大的缺点就是资源占用多、冗余步骤多、启动慢。目前最流行的 Linux 容器解决方案之一就是Docker,它最大优点就是轻量、资源占用少、启动快。本文从什么是Docker?Docker解决什么问题?有哪些好处?如何去部署实现去全面介绍。

0 引言

设想这样一个真实案例,假如我们要部署一个Python应用程序,要做哪些工作?

  • 首先需要python运行环境,比如部署的是python3,而机器上是python2。先装个python3,还要装各种依赖包,机器一些可能的冲突。

  • 装完python之后,发现还要装mysql或者redis。继续下载安装配置。

  • 啥?服务器不用了,需要换一台服务器?那重新来一遍吧。

  • 啥?基础应用做的太好要进行推广,需要指导其他厂商部署?这怎么办?

可以看出,在 Docker 之前软件行业的运维存在着以下这些痛点:

  • 软件的发布和部署低效又繁琐,而且总是需要人工介入

  • 环境的一致性难移保证

  • 在不同环境之间迁移的成本较高

在完成Docker部署安装之前,我们还是先认识下Docker的优点:

  • 软件构建容易,分发简单

  • 应用得到隔离,依赖被解除

  • 可以完美地用于 CI/CD

  • 快速部署,测试完以后销毁也方便

继续阅读

八款中文词性标注工具使用及在线测试

结束了中文分词工具的安装、使用及在线测试,开启中文词性标注在线测试之旅,一般来说,中文分词工具大多数都附带词性标注功能的,这里测试了之前在AINLP公众号上线的8款中文分词模块或者工具,发现它们都是支持中文词性标注的,这里面唯一的区别,就是各自用的词性标注集可能有不同:

以下逐一介绍这八个工具的中文词性标注功能的使用方法,至于安装,这里简要介绍,或者可以参考之前这篇文章:Python中文分词工具大合集:安装、使用和测试,以下是在Ubuntu16.04 & Python3.x的环境下安装及测试。
继续阅读

Python中文分词工具大合集:安装、使用和测试

这篇文章事实上整合了前面两篇文章的相关介绍,同时添加一些其他的Python中文分词相关资源,甚至非Python的中文分词工具,仅供参考。

首先介绍之前测试过的8款中文分词工具,这几款工具可以直接在AINLP公众号后台在线测试,严格的说,它们不完全是纯粹的中文分词工具,例如SnowNLP, Thulac, HanLP,LTP,CoreNLP都是很全面的(中文)自然语言处理工具。安装这些模块其实很简单,只要按官方文档的方法安装即可,以下做个简单介绍,在Python3.x的环境下测试,Ubuntu16.04 或 MacOS 测试成功。

再附加介绍12款其他的中文分词工具或者中文分词模块,最后的两款fnlp和ansj是比较棒的java中文分词工具,貌似还没有python接口,记录一下。这些中文分词工具我没有测试,感兴趣的同学可以动手试试。
继续阅读

中文分词工具在线PK新增:FoolNLTK、HITLTP、StanfordCoreNLP

继续中文分词在线PK之旅,上文《五款中文分词工具在线PK: Jieba, SnowNLP, PkuSeg, THULAC, HanLP》我们选择了5个中文分词开源工具,这次再追加3个,分别是FoolNLTK、哈工大LTP(pyltp, ltp的python封装)、斯坦福大学的CoreNLP(stanfordcorenlp is a Python wrapper for Stanford CoreNLP),现在可以在AINLP公众号测试一下:中文分词 我爱自然语言处理

以下是在Python3.x & Ubuntu16.04 的环境下测试及安装这些中文分词器:
继续阅读

五款中文分词工具在线PK: Jieba, SnowNLP, PkuSeg, THULAC, HanLP

最近玩公众号会话停不下来:玩转腾讯词向量:Game of Words(词语的加减游戏),准备把NLP相关的模块搬到线上,准确的说,搬到AINLP公众号后台对话,所以,趁着劳动节假期,给AINLP公众号后台聊天机器人添加了一项新技能:中文分词线上PK,例如在AINLP公众号后台对话输入:中文分词 我爱自然语言处理,就可以得到五款分词工具的分词结果:

现在的开源中文分词工具或者模块已经很丰富了,并且很多都有一些在封闭测试集上的效果对比数据,不过这仅仅只能展现这些分词工具在这个封闭测试集上的效果,并不能全面说明问题,个人觉得,选择一个适合自己业务的分词器可能更重要,有的时候,还需要加一些私人定制的词库。

这次首先选了5款中文分词工具,严格的来说,它们不完全是纯粹的中文分词工具,例如SnowNLP, Thulac, HanLP都是很全面的中文自然语言处理工具,这次,先试水它们的中文分词模块。安装这些模块其实很简单,只要按官方文档的方法安装即可,以下做个简单介绍,在Python3.x的环境下测试,Ubuntu16.04 或 MacOS 测试成功。
继续阅读