分类目录归档:预训练模型

台大这门深度学习自然语言处理课程,可能被低估了

估计很多同学的第一反映是李宏毅老师的“深度学习人类语言处理”课程,不过这次我们说的是台湾大学陈蕴侬老师的“应用深度学习”课程,这门课程我们之前在AINLP公众号上推荐过,不过主要给大家推荐的是课程视频和课件资源。前段时间,我把这门课程放在了B站上,并花了一点时间看了一下这门课程,觉得这门课程完全可以叫做“深度学习自然语言处理”,因为基本上就是讲得深度学习NLP的事情。个人觉得这门课程结构安排得相当合理,并且重点在BERT及其相关的内容和NLP任务上,对于学习深度学习自然语言处理的同学来说,完全可以和李宏毅老师深度学习人类语言处理的课程互补。

课程主页:

https://www.csie.ntu.edu.tw/~miulab/s108-adl/

B站传送门:

https://www.bilibili.com/video/BV1Mi4y1V7A1

课程视频及课件网盘链接,请关注AINLP公众号并回复"ADL2020"获取:

AINLP
继续阅读

完结撒花!李宏毅老师深度学习与人类语言处理课程视频及课件(附下载)

李宏毅老师2020新课 深度学习与人类语言处理课程 昨天(7月10日)终于完结了,这门课程里语音和文本的内容各占一半,主要关注近3年的相关技术,自然语言处理部分重点讲述BERT及之后的预处理模型(BERT和它的朋友们),以及相关的NLP任务,包括文本风格迁移、问答系统、聊天机器人以及最新的GPT3解读等,是难得的深度学习NLP最新学习材料。当然最重要是这是一门中文课程,李宏毅老师的课程质量又极高,再次认真的推荐给各位NLPer:

课程主页:http://speech.ee.ntu.edu.tw/~tlkagk/courses_DLHLP20.html

B站传送门:https://www.bilibili.com/video/BV1RE411g7rQ

如果需要该课程视频和课件,可以关注AINLP公众号后台回复“DLHLP”获取课程视频和相关课件网盘链接,另外我们建立了一个李宏毅老师课程的学习交流群,感兴趣的同学可以添加微信AINLPer(id: ainlper) ,备注“B站李宏毅”进群一起交流学习。

继续阅读

李宏毅老师2020新课深度学习与人类语言处理正式开放上线

前两天李宏毅老师机器学习2020版刚刚上线,这么他又马不停蹄的推出了又一款良心大作:深度学习与人类语言处理 (Deep Learning for Human Language Processing),非常适合NLPer门来追!

课程主页,包含视频和其他相关资料链接,建议保存:

http://speech.ee.ntu.edu.tw/~tlkagk/courses_DLHLP20.html

看了第一节课程视频,这门课程之所以叫做深度学习与人类语言处理,而不是深度学习与自然语言处理,主要是这门课程里文字和语音的内容个占一半,另外主要关注近3年的相关技术,譬如BERT及之后的预处理模型将重点讲述,非常值得期待。我们建立了一个这门课程的学习交流群,感兴趣的同学可以添加微信AINLPer(id: ainlper) ,备注“李宏毅”进群一起交流学习。

目前这门课程已经放出了2节课程内容,分别是课程概览和语音识别第一部分,感兴趣的同学可以直接观看:

如果觉得这个还不过瘾,可以关注AINLP公众号,回复"DLHLP",获取这门课程前2节课程视频和Slides,以后会持续更新相关资料。

关于AINLP

AINLP 是一个有趣有AI的自然语言处理社区,专注于 AI、NLP、机器学习、深度学习、推荐算法等相关技术的分享,主题包括文本摘要、智能问答、聊天机器人、机器翻译、自动生成、知识图谱、预训练模型、推荐系统、计算广告、招聘信息、求职经验分享等,欢迎关注!加技术交流群请添加AINLP君微信(id:AINLP2),备注工作/研究方向+加群目的。

鼠年春节,用 GPT-2 自动生成(写)春联和对对联

鼠年春节临近,来试试新的基于 GPT2-Chinese 自动对联系统:自动写对联(输入开头进行对联自动生成)和自动对对联(输入上联自动写下联)。老的自动对联功能是去年基于深度学习机器翻译模型上线的一个自动对对联的对话模块:风云三尺剑,花鸟一床书---对联数据集和自动对联机器人

这一年来,以BERT为代表的预训练模型不断推陈出新,席卷整个自然语言处理(NLP)领域,这其中NLP的难题之一自然语言生成(NLG)也得到了很大的助力,特别是去年上半年 OpenAI 的 GPT-2 的推出,非常惊艳,不过 GPT-2 的模型主要是基于英文领域的语料训练的,虽然到目前为止已经发布了含有15亿参数的完整模型,对于英文领域的自动文本生成非常有帮助,但是对于中文领域的NLG来说还是很受限。

回到中文领域,我们之前推荐过AINLP技术交流群杜则尧同学的开源项目 GPT2-Chinese:GPT2-Chinese:《【Github】GPT2-Chinese:中文的GPT2训练代码》,这个项目可以针对中文数据进行GPT-2模型的训练,可以写诗,新闻,小说,或是训练通用语言模型。所以对于自动对联生成来说,我能想到的就是基于GPT2-Chinese和对联数据训练一份对联领域的GPT2模型,用于对联自动生成:写对联和对对联。幸运的是,对联数据已经有了,依然是我们去年使用过 couplet-dataset ,特别感谢提供这份数据的同学,这份对联数据包含70多万条对联,唯一可惜的是没有横批,要是有横批,就可以造更完整的自动写对联和对对联系统了。

特别需要说明的是,这里并不是基于一个大的中文 GPT-2 模型进行特定领域 finetune 的,虽然目前已经有了大型的中文 GPT-2 预训练模型:gpt2-ml ,但是和 GPT2-Chinese 是两个体系,而 GPT2-Chinese 目前还不支持这个大模型的迁移。关于如何使用 GPT2-Chinese 进行对联数据的 GPT2 模型训练,这个项目的代码和文档都写得非常清楚,直接参考即可,如果有问题,可以查看一下issue,我遇到的问题基本上就是通过文档和issue解决的,这里提几个注意的点:

1)训练数据可以按 GPT2-Chinese 训练数据的格式要求写个脚本进行转换,可以加一些标记符,譬如开头,结尾以及上联下联之间的分隔符,这样在生成的时候可以基于这些标记符做trick;
2)训练时请将参数 min-length 设置为一个较小的数字,默认为128,由于对联数据长度比较短,按默认的设置训练后只会得到乱码,我直接设置为1;
3)根据自己GPU显存的大小调整 batch_size 和配置参数, 这里 batch_size 默认为8,训练时在1080TI的机器上会出现OOM,将其设置为4就可以完全跑通了,其他参数不用动;

对联 GPT-2 模型训练完成后,可以直接基于 GPT2-Chinese 里面的 generate.py 脚本进行测试,很方便,我基于 generate.py 和 flask-restful 写了一个 server 版本,对接到AINLP公众号后台了,感兴趣的同学可以关注AINLP公众号,直接进行测试:

关键词“写对联”触发对联自动生成,例如输入“写对联鼠年”,对联模型会基于“鼠年”进行自动续写,会给出以“鼠年”开头大概3个对联:

关键词“对对联”触发基于上联对下联,例如输入“对对联 一帆风顺年年好”,会给出大概3个候选对联:

当然你可以用“上联”触发老的对联版本进行对比:

至于两个版本的效果,欢迎多做对比,如果遇到了很棒的机器对联,也欢迎在评论里分享。最后,欢迎关注AINLP公众号,测试自动生成对联和自动对对联功能:

关于AINLP对话功能模块,感兴趣的同学可以参考:

腾讯词向量和相似词、相似度、词语游戏系列
相似词查询:玩转腾讯 AI Lab 中文词向量
玩转腾讯词向量:词语相似度计算和在线查询
腾讯词向量实战:通过Annoy进行索引和快速查询
玩转腾讯词向量:Game of Words(词语的加减游戏)
词向量游戏:梅西-阿根廷+葡萄牙=?
腾讯 800 万中文词向量 API Demo 搭建

NLP相关工具及在线测试(公众号对话测试)
五款中文分词工具在线PK: Jieba, SnowNLP, PkuSeg, THULAC, HanLP
中文分词工具在线PK新增:FoolNLTK、LTP、StanfordCoreNLP
Python中文分词工具大合集:安装、使用和测试
八款中文词性标注工具使用及在线测试
百度深度学习中文词法分析工具LAC试用之旅
来,试试百度的深度学习情感分析工具
AINLP公众号新增SnowNLP情感分析模块

自动对联及作诗机
风云三尺剑,花鸟一床书---对联数据集和自动对联机器人
自动对联活动获奖结果以及机器对联赏析
"自动作诗机"上线,代码和数据都是公开的

夸夸聊天机器人及其他技能
一行Python代码实现夸夸聊天机器人
为了夸夸聊天机器人,爬了一份夸夸语料库
夸夸聊天机器人升级:从随机到准个性化
来,试试语音(识别)聊天(机器人)
来,试试成语接龙
推荐一份中文数据,来试试汉字、词语、成语、歇后语在线检索
AINLP公众号新增"狗屁不通文章生成器"接口
来,试试彩虹屁生成器

如果对AINLP公众号感兴趣,也欢迎参考我们的年度阅读清单:AINLP年度阅读收藏清单