深度学习实践:从零开始做电影评论文本情感分析

最近读了《Python深度学习》, 是一本好书,很棒,隆重推荐。

本书由Keras之父、现任Google人工智能研究员的弗朗索瓦•肖莱(François Chollet)执笔,详尽介绍了用Python和Keras进行深度学习的探索实践,涉及计算机视觉、自然语言处理、生成式模型等应用。书中包含30多个代码示例,步骤讲解详细透彻。由于本书立足于人工智能的可达性和大众化,读者无须具备机器学习相关背景知识即可展开阅读。在学习完本书后,读者将具备搭建自己的深度学习环境、建立图像识别模型、生成图像和文字等能力。

各方面都很好,但是总感觉哪里有点欠缺,后来想想,可能是作者做得太好了,把数据预处理都做得好好的,所以你才能“20行搞定情感分析”,这可能也是学习其他深度学习工具过程中要面临的一个问题,很多工具都提供了预处理好的数据,导致学习过程中只需要调用相关接口即可。不过在实际工作中,数据的预处理是非常重要的,从数据获取,到数据清洗,再到基本的数据处理,例如中文需要分词,英文需要Tokenize, Truecase或者Lowercase等,还有去停用词等等,在将数据“喂”给工具之前,有很多事情要做。这个部分,貌似是当前一些教程有所欠缺的地方,所以才有了这个“从零开始做”的想法和系列,准备弥补一下这个缺失,第一个例子就拿《Python深度学习》这本书第一个文本挖掘例子练手:电影评论文本分类-二分类问题,这也可以归结为一个情感分析任务。

首先介绍一下这个原始的电影评论数据集aclIMDB: Large Movie Review Dataset, 这个数据集由斯坦福大学人工智能实验室于2011年推出,包含25000条训练数据和25000条测试数据,另外包含约50000条没有标签的辅助数据。训练集和测试集又分别包含12500条正例(正向评价pos)和12500负例(负向评价neg)。关于数据,更详细的介绍可参考该数据集的官网:http://ai.stanford.edu/~amaas/data/sentiment/, paper: Learning Word Vectors for Sentiment Analysis, 和数据集里的readme。

然后下载和处理这份数据:Large Movie Review Dataset v1.0,下载链接;

http://ai.stanford.edu/~amaas/data/sentiment/aclImdb_v1.tar.gz

下载之后进行解压:tar -zxvf aclImdb.tar.gz,可以用tree命令看一下aclImdb的目录结构:

tree aclImdb -L 2

继续进入训练集正例的目录看一下: cd aclImdb/train/pos/:

这个里面包含了12500篇英文评论,我们随机打开一个看一下里面的文本内容:

vim 1234_10.txt

I grew up watching this movie ,and I still love it just as much today as when i was a kid. Don't listen to the critic reviews. They are not accurate on this film.Eddie Murphy really shines in his roll.You can sit down with your whole family and everybody will enjoy it.I recommend this movie to everybody to see. It is a comedy with a touch of fantasy.With demons ,dragons,and a little bald kid with God like powers.This movie takes you from L.A. to Tibet , of into the amazing view of the wondrous temples of the mountains in Tibet.Just a beautiful view! So go do your self a favor and snatch this one up! You wont regret it!

继续阅读

BERT相关论文、文章和代码资源汇总

BERT最近太火,蹭个热点,整理一下相关的资源,包括Paper, 代码和文章解读。

1、Google官方:

1) BERT: Pre-training of Deep Bidirectional Transformers for Language Understanding

一切始于10月Google祭出的这篇Paper, 瞬间引爆整个AI圈包括自媒体圈: https://arxiv.org/abs/1810.04805

2) Github: https://github.com/google-research/bert

11月Google推出了代码和预训练模型,再次引起群体亢奋。

3) Google AI Blog: Open Sourcing BERT: State-of-the-Art Pre-training for Natural Language Processing

2、第三方解读:
1) 张俊林博士的解读, 知乎专栏:从Word Embedding到Bert模型—自然语言处理中的预训练技术发展史

我们在AINLP微信公众号上转载了这篇文章和张俊林博士分享的PPT,欢迎关注:

2) 知乎: 如何评价 BERT 模型?

3) 【NLP】Google BERT详解

4) [NLP自然语言处理]谷歌BERT模型深度解析

5) BERT Explained: State of the art language model for NLP

6) BERT介绍

7) 论文解读:BERT模型及fine-tuning

8) NLP突破性成果 BERT 模型详细解读

3、第三方代码:

1) pytorch-pretrained-BERT: https://github.com/huggingface/pytorch-pretrained-BERT
Google官方推荐的PyTorch BERB版本实现,可加载Google预训练的模型:PyTorch version of Google AI's BERT model with script to load Google's pre-trained models

2) BERT-pytorch: https://github.com/codertimo/BERT-pytorch
另一个Pytorch版本实现:Google AI 2018 BERT pytorch implementation

3) BERT-tensorflow: https://github.com/guotong1988/BERT-tensorflow
Tensorflow版本:BERT: Pre-training of Deep Bidirectional Transformers for Language Understanding

4) bert-chainer: https://github.com/soskek/bert-chainer
Chanier版本: Chainer implementation of "BERT: Pre-training of Deep Bidirectional Transformers for Language Understanding"

5) bert-as-service: https://github.com/hanxiao/bert-as-service
将不同长度的句子用BERT预训练模型编码,映射到一个固定长度的向量上:Mapping a variable-length sentence to a fixed-length vector using pretrained BERT model
这个很有意思,在这个基础上稍进一步是否可以做一个句子相似度计算服务?有没有同学一试?

6) bert_language_understanding: https://github.com/brightmart/bert_language_understanding
BERT实战:Pre-training of Deep Bidirectional Transformers for Language Understanding: pre-train TextCNN

7) sentiment_analysis_fine_grain: https://github.com/brightmart/sentiment_analysis_fine_grain
BERT实战,多标签文本分类,在 AI Challenger 2018 细粒度情感分析任务上的尝试:Multi-label Classification with BERT; Fine Grained Sentiment Analysis from AI challenger

8) BERT-NER: https://github.com/kyzhouhzau/BERT-NER
BERT实战,命名实体识别: Use google BERT to do CoNLL-2003 NER !

9) BERT-keras: https://github.com/Separius/BERT-keras
Keras版: Keras implementation of BERT with pre-trained weights

持续更新,BERT更多相关资源欢迎补充,欢迎关注我们的微信公众号:AINLP

注:原创文章,转载请注明出处及保留链接“我爱自然语言处理”:http://www.52nlp.cn

本文链接地址:BERT相关论文、文章和代码资源汇总 http://www.52nlp.cn/?p=10870

Coursera专项课程推荐:金融中的机器学习和强化学习

Coursera近期新推了一个金融和机器学习的专项课程系列:Machine Learning and Reinforcement Learning in Finance Specialization(金融中的机器学习和强化学习),看起来很有意思。

课程链接:http://coursegraph.com/coursera-specializations-machine-learning-reinforcement-finance

这个专项课程的主要目标是为金融相关的机器学习核心范式和算法奠定坚实的基础而提供必要的知识和实战技能,特别关注机器学习在金融投资中不同的实际问题中的应用。

该系列旨在帮助学生解决他们在现实生活中可能遇到的实际的机器学习问题,包括:

(1)将问题映射到可用的机器学习方法的泛化场景,

(2)选择最适合解决问题的特定机器学习方法,以及

(3)成功实施解决方案,并评估其性能。

该专业课程面向三类学生设计:

· 在银行,资产管理公司或对冲基金等金融机构工作的从业人员

· 对将机器学习应用于日内交易感兴趣的个人

· 目前正在攻读金融学,统计学,计算机科学,数学,物理学,工程学或其他相关学科的学位的全日制学生,这些学生希望了解机器学习在金融领域的实际应用。
继续阅读

一文详解深度学习在命名实体识别(NER)中的应用

近几年来,基于神经网络的深度学习方法在计算机视觉、语音识别等领域取得了巨大成功,另外在自然语言处理领域也取得了不少进展。在NLP的关键性基础任务—命名实体识别(Named Entity Recognition,NER)的研究中,深度学习也获得了不错的效果。最近,笔者阅读了一系列基于深度学习的NER研究的相关论文,并将其应用到达观的NER基础模块中,在此进行一下总结,与大家一起分享学习。

1、NER 简介

NER又称作专名识别,是自然语言处理中的一项基础任务,应用范围非常广泛。命名实体一般指的是文本中具有特定意义或者指代性强的实体,通常包括人名、地名、组织机构名、日期时间、专有名词等。NER系统就是从非结构化的输入文本中抽取出上述实体,并且可以按照业务需求识别出更多类别的实体,比如产品名称、型号、价格等。因此实体这个概念可以很广,只要是业务需要的特殊文本片段都可以称为实体。

学术上NER所涉及的命名实体一般包括3大类(实体类,时间类,数字类)和7小类(人名、地名、组织机构名、时间、日期、货币、百分比)。

实际应用中,NER模型通常只要识别出人名、地名、组织机构名、日期时间即可,一些系统还会给出专有名词结果(比如缩写、会议名、产品名等)。货币、百分比等数字类实体可通过正则搞定。另外,在一些应用场景下会给出特定领域内的实体,如书名、歌曲名、期刊名等。

NER是NLP中一项基础性关键任务。从自然语言处理的流程来看,NER可以看作词法分析中未登录词识别的一种,是未登录词中数量最多、识别难度最大、对分词效果影响最大问题。同时NER也是关系抽取、事件抽取、知识图谱、机器翻译、问答系统等诸多NLP任务的基础。

NER当前并不算是一个大热的研究课题,因为学术界部分学者认为这是一个已经解决的问题。当然也有学者认为这个问题还没有得到很好地解决,原因主要有:命名实体识别只是在有限的文本类型(主要是新闻语料中)和实体类别(主要是人名、地名、组织机构名)中取得了不错的效果;与其他信息检索领域相比,实体命名评测预料较小,容易产生过拟合;命名实体识别更侧重高召回率,但在信息检索领域,高准确率更重要;通用的识别多种类型的命名实体的系统性能很差。

2. 深度学习方法在NER中的应用

NER一直是NLP领域中的研究热点,从早期基于词典和规则的方法,到传统机器学习的方法,到近年来基于深度学习的方法,NER研究进展的大概趋势大致如下图所示。

图1:NER发展趋势

在基于机器学习的方法中,NER被当作序列标注问题。利用大规模语料来学习出标注模型,从而对句子的各个位置进行标注。NER 任务中的常用模型包括生成式模型HMM、判别式模型CRF等。条件随机场(ConditionalRandom Field,CRF)是NER目前的主流模型。它的目标函数不仅考虑输入的状态特征函数,而且还包含了标签转移特征函数。在训练时可以使用SGD学习模型参数。在已知模型时,给输入序列求预测输出序列即求使目标函数最大化的最优序列,是一个动态规划问题,可以使用Viterbi算法解码来得到最优标签序列。CRF的优点在于其为一个位置进行标注的过程中可以利用丰富的内部及上下文特征信息。

图2:一种线性链条件随机场

近年来,随着硬件计算能力的发展以及词的分布式表示(word embedding)的提出,神经网络可以有效处理许多NLP任务。这类方法对于序列标注任务(如CWS、POS、NER)的处理方式是类似的:将token从离散one-hot表示映射到低维空间中成为稠密的embedding,随后将句子的embedding序列输入到RNN中,用神经网络自动提取特征,Softmax来预测每个token的标签。

这种方法使得模型的训练成为一个端到端的过程,而非传统的pipeline,不依赖于特征工程,是一种数据驱动的方法,但网络种类繁多、对参数设置依赖大,模型可解释性差。此外,这种方法的一个缺点是对每个token打标签的过程是独立的进行,不能直接利用上文已经预测的标签(只能靠隐含状态传递上文信息),进而导致预测出的标签序列可能是无效的,例如标签I-PER后面是不可能紧跟着B-PER的,但Softmax不会利用到这个信息。

学界提出了DL-CRF模型做序列标注。在神经网络的输出层接入CRF层(重点是利用标签转移概率)来做句子级别的标签预测,使得标注过程不再是对各个token独立分类。

2.1 BiLSTM-CRF

LongShort Term Memory网络一般叫做LSTM,是RNN的一种特殊类型,可以学习长距离依赖信息。LSTM 由Hochreiter &Schmidhuber (1997)提出,并在近期被Alex Graves进行了改良和推广。在很多问题上,LSTM 都取得了相当巨大的成功,并得到了广泛的使用。LSTM 通过巧妙的设计来解决长距离依赖问题。

所有 RNN 都具有一种重复神经网络单元的链式形式。在标准的RNN中,这个重复的单元只有一个非常简单的结构,例如一个tanh层。

图3:传统RNN结构

LSTM 同样是这样的结构,但是重复的单元拥有一个不同的结构。不同于普通RNN单元,这里是有四个,以一种非常特殊的方式进行交互。

图4:LSTM结构

LSTM通过三个门结构(输入门,遗忘门,输出门),选择性地遗忘部分历史信息,加入部分当前输入信息,最终整合到当前状态并产生输出状态。

图5:LSTM各个门控结构

应用于NER中的biLSTM-CRF模型主要由Embedding层(主要有词向量,字向量以及一些额外特征),双向LSTM层,以及最后的CRF层构成。实验结果表明biLSTM-CRF已经达到或者超过了基于丰富特征的CRF模型,成为目前基于深度学习的NER方法中的最主流模型。在特征方面,该模型继承了深度学习方法的优势,无需特征工程,使用词向量以及字符向量就可以达到很好的效果,如果有高质量的词典特征,能够进一步获得提高。

图6:biLSTM-CRF结构示意图

2.2 IDCNN-CRF

对于序列标注来讲,普通CNN有一个不足,就是卷积之后,末层神经元可能只是得到了原始输入数据中一小块的信息。而对NER来讲,整个输入句子中每个字都有可能对当前位置的标注产生影响,即所谓的长距离依赖问题。为了覆盖到全部的输入信息就需要加入更多的卷积层,导致层数越来越深,参数越来越多。而为了防止过拟合又要加入更多的Dropout之类的正则化,带来更多的超参数,整个模型变得庞大且难以训练。因为CNN这样的劣势,对于大部分序列标注问题人们还是选择biLSTM之类的网络结构,尽可能利用网络的记忆力记住全句的信息来对当前字做标注。

但这又带来另外一个问题,biLSTM本质是一个序列模型,在对GPU并行计算的利用上不如CNN那么强大。如何能够像CNN那样给GPU提供一个火力全开的战场,而又像LSTM这样用简单的结构记住尽可能多的输入信息呢?

Fisher Yu and Vladlen Koltun 2015 提出了dilated CNN模型,意思是“膨胀的”CNN。其想法并不复杂:正常CNN的filter,都是作用在输入矩阵一片连续的区域上,不断sliding做卷积。dilated CNN为这个filter增加了一个dilation width,作用在输入矩阵的时候,会skip所有dilation width中间的输入数据;而filter本身的大小保持不变,这样filter获取到了更广阔的输入矩阵上的数据,看上去就像是“膨胀”了一般。

具体使用时,dilated width会随着层数的增加而指数增加。这样随着层数的增加,参数数量是线性增加的,而receptive field却是指数增加的,可以很快覆盖到全部的输入数据。

图7:idcnn示意图

图7中可见感受域是以指数速率扩大的。原始感受域是位于中心点的1x1区域:

(a)图中经由原始感受域按步长为1向外扩散,得到8个1x1的区域构成新的感受域,大小为3x3;

(b)图中经过步长为2的扩散,上一步3x3的感受域扩展为为7x7;

(c)图中经步长为4的扩散,原7x7的感受域扩大为15x15的感受域。每一层的参数数量是相互独立的。感受域呈指数扩大,但参数数量呈线性增加。

对应在文本上,输入是一个一维的向量,每个元素是一个character embedding:

图8:一个最大膨胀步长为4的idcnn块

IDCNN对输入句子的每一个字生成一个logits,这里就和biLSTM模型输出logits完全一样,加入CRF层,用Viterbi算法解码出标注结果。

在biLSTM或者IDCNN这样的网络模型末端接上CRF层是序列标注的一个很常见的方法。biLSTM或者IDCNN计算出的是每个词的各标签概率,而CRF层引入序列的转移概率,最终计算出loss反馈回网络。

3. 实战应用

3.1 语料准备

Embedding:我们选择中文维基百科语料来训练字向量和词向量。

基础语料:选择人民日报1998年标注语料作为基础训练语料。

附加语料:98语料作为官方语料,其权威性与标注正确率是有保障的。但由于其完全取自人民日报,而且时间久远,所以对实体类型覆盖度比较低。比如新的公司名,外国人名,外国地名。为了提升对新类型实体的识别能力,我们收集了一批标注的新闻语料。主要包括财经、娱乐、体育,而这些正是98语料中比较缺少的。由于标注质量问题,额外语料不能加太多,约98语料的1/4。

3.2 数据增强

对于深度学习方法,一般需要大量标注语料,否则极易出现过拟合,无法达到预期的泛化能力。我们在实验中发现,通过数据增强可以明显提升模型性能。具体地,我们对原语料进行分句,然后随机地对各个句子进行bigram、trigram拼接,最后与原始句子一起作为训练语料。

另外,我们利用收集到的命名实体词典,采用随机替换的方式,用其替换语料中同类型的实体,得到增强语料。

下图给出了BiLSTM-CRF模型的训练曲线,可以看出收敛是很缓慢的。相对而言,IDCNN-CRF模型的收敛则快很多。

图9:BiLSTM-CRF的训练曲线

图10:IDCNN-CRF的训练曲线

3.3 实例

以下是用BiLSTM-CRF模型的一个实例预测结果。

图11:BiLSTM-CRF预测实例

4. 总结

最后进行一下总结,将神经网络与CRF模型相结合的CNN/RNN-CRF成为了目前NER的主流模型。对于CNN与RNN,并没有谁占据绝对优势,各有各的优点。由于RNN有天然的序列结构,所以RNN-CRF使用更为广泛。基于神经网络结构的NER方法,继承了深度学习方法的优点,无需大量人工特征。只需词向量和字向量就能达到主流水平,加入高质量的词典特征能够进一步提升效果。对于少量标注训练集问题,迁移学习,半监督学习应该是未来研究的重点。

ABOUT

关于作者

朱耀邦:达观数据NLP算法工程师,负责达观数据NLP基础模块的研究、优化,以及NLP算法在文本挖掘系统中的具体应用。对深度学习、序列标注、实体及关系抽取有浓厚兴趣。

达观数据王子豪:这5个例子,小学生都能秒懂分类算法

分类算法作为数据挖掘、机器学习中重要的研究领域,在新闻分类、黄反广告识别、情感分析、观点挖掘等应用实践中都有着广泛的应用。如何将朴素贝叶斯、决策树、支持向量机这些常见的分类算法通俗易懂地讲给对人工智能感兴趣的人?达观研究院的这篇分类算法科普文章,以日常生活为例子,让小学生都能秒懂分类算法。

试想,8岁的小明是你刚上小学的儿子,长得可爱,古灵精怪,对世界充满好奇。

这天饭后,刚写完家庭作业的小明看到你在书桌前对着电脑眉头紧锁,便跑了过来问你:“爸爸(妈妈),你在做什么呀?”。

身为算法工程师的你正为公司的一个分类项目忙得焦头烂额,听到小明的问话,你随口而出:“分类!”

“分类是什么?”

听到儿子的追问,你的视线终于离开屏幕,但想说的话还没出口又咽了回去……

分类是什么?

简单来说,分类就是对事物进行区分的过程和方法。

在你眼里乖巧的小明是一个好孩子,同时你也想确保他会在学校做一名“好学生”而不是“坏学生”。这里的区分“好学生”和“坏学生”就是一个分类任务,关于这点,达观研究院可以帮你回答小明的疑问。

K最邻近

“别和其他坏学生在一起,否则你也会和他们一样。”        —— 家长

这句话通常来自家长的劝诫,但它透露着不折不扣的近邻思想。在分类算法中,K最近邻是最普通也是最好理解的算法。它的主要思想是通过离待预测样本最近的K个样本的类别来判断当前样本的类别。

家长们希望孩子成为好学生,可能为此不惜重金购买学区房或者上私立学校,一个原因之一是这些优秀的学校里有更多的优秀学生。与其他优秀学生走的更近,从K最近邻算法的角度来看,就是让目标样本与其他正样本距离更近、与其他负样本距离更远,从而使得其近邻中的正样本比例更高,更大概率被判断成正样本。

 

朴素贝叶斯

“根据以往抓获的情况来看,十个坏学生有九个爱打架。”      —— 教导主任

说这句话的训导主任很有可能就是通过朴素贝叶斯算法来区分好、坏学生。

“十个坏学生有九个爱打架”就意味着“坏学生”打架的概率P(打架|坏学生)=0.9,假设根据训导处历史记录坏学生占学生总数P(坏学生)=0.1、打架发生的概率是P(打架)=0.09,那么这时如果发生打架事件,就可以通过贝叶斯公式判断出当事学生是“坏学生”的概率P(坏学生|打架)=P(打架|坏学生)×P(坏学生)÷P(打架)=1.0,即该学生100%是“坏学生”。

朴素贝叶斯算法成立的一个前提是满足特征间条件独立假设。假如教导主任还管学生早恋问题,那么他通过“打架”和“早恋”两种特征来判断学生的前提必须是——在已知学生“好坏”的情况下“打架”和“早恋”之间没有关联。这样的假设可能和实际情况不符合,但让训导主任判断起来更加简单粗暴。

决策树

“先看抽不抽烟,再看染不染头发,最后看讲不讲脏话。”  ——社区大妈

社区大妈经验丰富,有一套自己的判断逻辑。假设“抽烟”、“染发”和“讲脏话”是社区大妈认为的区分“好坏”学生的三项关键特征,那么这样一个有先后次序的判断逻辑就构成一个决策树模型。在决策树中,最能区分类别的特征将作为最先判断的条件,然后依次向下判断各个次优特征。决策树的核心就在于如何选取每个节点的最优判断条件,也即特征选择的过程。

而在每一个判断节点,决策树都会遵循一套IF-THEN的规则:

IF “抽烟” THEN -> “坏学生”

ELSE

IF “染发” THEN -> “坏学生”

ELSE IF “讲脏话” THEN -> “坏学生”

ELSE -> “好学生”

逻辑回归

“上课讲话扣1分,不交作业扣2分,比赛得奖加5分。”   ——纪律委员

班上的纪律委员既勤恳又严格,总是在小本本上记录同学们的每一项行为得分。在完成对每一项行为的评分后,纪律委员根据最终加总得到的总分来判断每位同学的表现好坏。

上述的过程就非常类似于逻辑回归的算法原理。我们称逻辑回归为一种线性分类器,其特征就在于自变量x和因变量y之间存在类似y=ax+b的一阶的、线性的关系。假设“上课讲话”、“不交作业”和“比赛得奖”的次数分别表示为x1、x2、和x3,且每个学生的基础分为0,那么最终得分y=-1*x1-2*x2+5*x3+0。其中-1、-2和5分别就对应于每种行为在“表现好”这一类别下的权重。

Sigmoid函数图像

对于最终得分y,逻辑回归还通过Sigmoid函数将其变换到0-1之间,其含义可以认为是当前样本属于正样本的概率,即得分y越高,属于“表现好”的概率就越大。也就是说,假如纪律委员记录了某位同学分别“上课讲话”、“不交作业”和“比赛得奖”各一次,那么最终得分y=-2-1+5=2,而对2进行Sigmoid变换后约等于0.88,即可知该同学有88%的概率为“好学生”。

支持向量机

“我想个办法把表现差的学生都调到最后一排。”  ——班主任

即使学生们再不情愿,班主任也有一万个理由对他们的座位作出安排。对于“坏学生”,一些班主任的采取的做法是尽量让他们与“好学生”保持距离,即将“坏学生”们都调到教室的最后一排。这样一来,就相当于在学生们之间画了一条清晰的分割界线,一眼就能区分出来。

支持向量机的思想就是如此。支持向量机致力于在正负样本的边界上找到一条分割界线(超平面),使得它能完全区分两类样本的同时,保证划分出的间隔尽量的大。如果一条分割界线无法完全区分(线性不可分),要么加上松弛变量进行适当的容忍,要么通过核函数对样本进行空间上的映射后再进行划分。对于班主任来讲,调换学生们的座位就相当于使用了核函数,让原本散落在教室里的“好”、“坏”学生从线性不可分变得线性可分了。

结束语

分类和分类算法的思想其实无处不在。而在实际工程中,分类算法的应用需要关注的地方还有很多。达观数据在中文文本分类方面拥有丰富的实践经验和心得。想了解这方面的内容,敬请期待下一篇文章《中文文本分类——你需要了解的10项关键内容》。

关于作者

王子豪:达观数据高级NLP算法工程师,负责达观数据文本挖掘和NLP算法的开发及应用,在文本分类、观点挖掘和情感分析等领域有丰富实践经验。

如何学习自然语言处理:NLP领域经典《自然语言处理综论》英文版第三版更新

如何学习NLP? 我觉得先要学好英语、数学和编程,因为英文世界的资料更丰富和原创,而数学会让你读论文的时候游刃有余、编程可以让你随时随地实现相关的idea。这好像是废话,那么闲话少说,进入正题。

去年写过一篇《如何学习自然语言处理:一本书和一门课》,介绍了NLP领域经典书籍《自然语言处理综论(Speech and Language Processing)》第三版的相关情况,时隔一年,很多事情发生了变化,包括第二版的中文翻译版终于出了。作为NLP入门书籍,十年前我读过这本书的第一版中文翻译版,第二版英文版;看到第二版中文翻译版和当前第三版英文版的相关内容,仿佛一个时代的跨越。

貌似为了方便2018年(斯坦福)秋季课程的原因,该书作者,NLP领域的大神 Daniel Jurafsky 教授和 James H. Martin 教授发布了一个截止2018年9月23日的单pdf文件:Speech and Language Processing (3rd ed. draft),包含了目前已经完成的所有章节,供用户下载和使用:

This is the release for the start of fall term 2018.
The slides are in the process of being updated now, we are putting them up as we write them.

Significantly rewritten version of 5, 6, 7, 8, 17, 18, 19, 23, 24, 25, and a draft of 9! New pedagogical sequences on neural networks and their training, starting with logistic regression and continuing with embeddings, feed-forward nets, and RNNs. Plus new or improved coverage of BPE, tf-idf, bias in embeddings, beam search decoding, HMMs, connotation frames, lexicon induction. reading comprehension/QA. Some chapters have been moved to the Appendix.

New lecture slides (so far) for chapters 6 and 25.

Here's a single pdf of the whole book-so-far!

Typos and comments welcome (just email slp3edbugs@gmail.com and let us know the date on the draft)!
And feel free to use the draft slides in your classes.

When will the book be finished? We're shooting for late 2019.

与之前的版本相比,重写了5、6、7、8、17、18、19、23、24、25章节的大部分内容和并新增了第9章节“递归神经网络中的序列处理(Sequence Processing with Recurrent Networks)”的草稿;调整了神经网络及其训练的教学顺序,从逻辑回归开始,到(词)嵌入,前馈网络以及递归神经网络;新增或者加大了BPE处理、tf-idf、柱搜索解码、隐马尔可夫模型、词典推理、阅读理解、自动问答等内容;一些旧的章节被移到附录。

另一个大家比较关心的问题,英文版第三版什么时候完工?官方预计要到2019年年底了。这本书英文版第一版自2000年出版,第二版英文版2008年出版,至今跨越接近20年,特别是这几年深度学习的风生水起,第三版增加了很多NLP和深度学习相关的内容,相对第二版变化有些大,这个第三版已完成章节的电子版草稿,总计有558页,估计全书完成时要秒杀第二版的厚度。

关于作者,两位都是NLP领域的神牛,以下是第二版中文翻译版中详细的介绍:

Daniel Jurafsky现任斯坦福大学语言学系和计算机科学系副教授。在此之前,他曾在博尔德的科罗拉多大学语言学系、计算机科学系和认知科学研究所任职。他出生于纽约州的Yonkers,1983年获语言学学士,1992年获计算机科学博士,两个学位都在伯克利加利福尼亚大学获得。他于1998年获得美国国家基金会CAREER奖,2002年获得Mac-Arthur奖。他发表过90多篇论文,内容涉及语音和语音处理的广泛领域。James H. Martin现任博尔德的科罗拉多大学语言学系、计算机科学系教授,认知科学研究所研究员。他出生于纽约市,1981年获可伦比亚大学计算机科学学士,1988年获伯克利加利福尼亚大学计算机科学博士。他写过70多篇关于计算机科学的论著,出版过《隐喻解释的计算机模型》(A Computational Model of Metaphor Interpretation)一书。

最后是如何下载这个电子版,其实官网上已经提供了相关的下载链接:https://web.stanford.edu/~jurafsky/slp3/ ,这篇文章上面的pdf也直接链向下载链接 ,如果还是无法下载这个电子版,可以关注我们的公众号:"NLPJob" , 回复 "slp3" 获取该书电子版以及 Daniel Jurafsky 教授之前在Coursera上开播的斯坦福大学自然语言处理课程相关资料视频(目前已绝版),一并学习自然语言处理。

注:原创文章,转载请注明出处及保留链接“我爱自然语言处理”:http://www.52nlp.cn

本文链接地址:如何学习自然语言处理:NLP领域经典《自然语言处理综论》英文版第三版更新 http://www.52nlp.cn/?p=10785

达观数据桂洪冠:如何省时省力验证模型效果?达观数据在线分层实验平台给你支招

背景

随着大数据和人工智能时代的到来,数据的驱动使得企业经营决策和精细化运营的效果指标的量化评估成为可能,企业的决策和运营也越来越离不开数据的支持。尤其是朝夕万变的互联网行业,产品创新和决策都需要快速得到用户反馈的数据去不断的迭代更新。 产品的新特性是否会受到用户的欢迎?新优化的模型和策略的线上效果如何?如何低成本的进行快速且量化的效果验证? 答案是A/B test实验

事实上,一个高效的A/B test在线实验平台已经成为各大互联网公司进行产品迭代和策略优化的标配工具。A/B测试是互联网公司实现数据驱动的基础,Microsoft、Google, Amazon、Facebook都在这方面做了大量的工作,腾讯、阿里、百度等国内主流互联网公司也纷纷各自构建了一套支持产品迭代和策略优化的A/B test在线实验平台。

达观数据的算法和工程团队每天都在持续不断地尝试各种算法模型的升级和策略优化,而这些算法模型和策略有的相互独立,有的相互影响。为了对这些模型和策略进行有效的量化效果评估,我们借鉴了谷歌的 ”Overlapping Experiment Infrastructure”中的思想搭建了达观数据在线分层实验平台。该实验平台可以支持同时运行多个并行实验,支持多种分流模式,支持自动灰度发布,支持实验效果的实时反馈和可视化(达观数据桂洪冠)。

分层实验模型

达观数据在线分层实验平台的设计借鉴了谷歌2010年在KDD上公布的分层实验框架,并在其基础上根据我们的应用特点进行了大量的裁剪。谷歌分层实验框架对实验空间进行了纵向横向两个维度的划分,其中纵向的划分是对应的概念,横向的划分对应的概念。是指流量的一个划分(指对一部分流量的独占),是指系统参数的一个子集,而实验是指在一个流量划分上,进行零个或多个参数的修改,并最后改变请求处理的过程。概念还是比较抽象,我们来看一个栗子:

如上图,流量先被分成两个域,左边是一个只有单一层的非重叠域,右边是一个三层的重叠域。在这种情况下,每个请求要么被分到非重叠域要么被分到重叠域。如果请求在非重叠域(上图左侧),那么请求最多在一个实验中(这个实验可以改变参数集合中的任意参数的值),如果请求在重叠域(上图右侧),那么请求可以通过三个实验层总共九个实验中。每个实验层可以根据不同的流量划分策略把流量分配到相应参数集的实验中。

下图是一个更具体的栗子,左侧是非重叠域,右侧分为3层,分别是UI层搜索结果层广告结果层

根据我们的实践经验,一般每一层划定一个批次实验,这个批次试验中有一个是基准实验,其它的属于对比实验,基准实验以及每个对比试验都对应一个试验参数集(达观数据桂洪冠)。

分层实验模型特性

分层实验模型具备如下一些特性:

特性1:纵向域划分,横向层划分。

特性2:相互关联的策略参数位于相同实验层,相互独立的策略参数位于不同实验层。

特性3:流量在不同实验层之间根据不同的分流策略被重新分配,不同层的实验流量是正交的。

特性4:不同实验层之间的实验相互独立。

特性5:模型的发布层(Launch Layers)可以实现实验流量的灰度发布直至全流量发布。

流量分配策略

分层实验模型常见的流量分配策略:

策略1:随机分配

优点是简单自然,缺点是用户的请求会在不同参数集的实验中“穿梭”,造成用户体验上的不一致性。

策略2:按照cookie或用户id取模进行分配

此种流量划分方式可以确保用户的请求被分配到固定的实验中,不会造成用户体验的不一致。

策略3:按照cookie+日期取模进行分配

这种方式是综合了cookie和日期的信息后再取模,采用这种方式的话,一个实验一天内圈定的cookie是固定的,但随着日期的变更会圈定不同的cookie。

策略4:按照业务字段进行分配

这种方式可以满足特定的实验流量要求,比如可以按照用户的地域来源取特定城市的用户流量,或者按照用户年龄取特定年龄段的用户流量。

策略5:hash查询串取模进行分配

这种方式使得相同的查询串请求可以分流到确定的实验上。

为了保证层与层之间实验流量的相互独立,上述基于取模的流量分配策略需要考虑实验所在层layerid的信息, 假设当前层有20个bucket分桶(实验参数),则当前流量在当前层的bucket = (f(cookieid, layerid) % 20),f是某个hash函数。

流量分流条件

在通过上述流量分配策略选择一部分流量后,分流条件(condition)通过仅分配特定条件的流量给实验或域,以达到更高效利用流量的目的。比如,一个实验仅仅改变来自日语的查询,那么实验配置中只抽取日语的流量。我们可以基于地区,语言,浏览器等信息设置流量抽样条件。有了分流条件,一个只使用“日语”流量的实验,和一个只使用英语流量的实验,可以使用相同的cookie取模。

灰度发布策略

灰度发布是一种常用的发布流量控制策略,是指在实验的过程中根据实验的效果逐步加大实验流量同时持续跟踪实验效果直至最终全量一个实验。分层实验模型是如何实现灰度发布策略的呢? 谷歌提出一个发布层的概念(Launch Layers)。在这个架构下,一个特性的评估和发布过程是类似如下过程的:

1)创建一个实验或是一组实验来评估特性。注意配置实验涉及指定分配类型和相关的分配参数(比如:cookie取模),分配条件,和特性相关的参数。

2)评估实验指标。根据实验结果,判断是否要进行新一轮的实验,即通过修改或创建新的实验,或甚至修改代码从根本上改变特性。

3)如果特性可以发布,就进入发布过程:创建一个新的发布层和发布层实验,逐步的放量这个实验,并最终删除发布完的发布层,然后将发布层实验的相关参数设为系统默认参数。

达观分层实验平台架构

达观分层实验平台主要由实验配置管理中心实验分析与展示中心以及在线服务系统三部分组成。

实验配置管理中心

实验人员可以在实验配置管理中心进行实验的创建启动暂停删除等操作。

实验创建:实验数据主要包括(但不限于)实验的名称(比如搜索Reranking实验)、实验的起始时间、实验owner、实验参数集、实验作用模块、流量分配等。其中实验起始时间定义了实验生效发生作用的时间范围,超过此时间实验自动结束并停止。实验参数集定义了需要测试的不同实验参数数据,每个实验参数对应实验的一个bucket分桶(比如rank_strategy=5, rank_strategy=6, rank_strategy=7分别对应实验的三个bucket)。每个实验都有一个唯一的实验ID。

实验流量分配:对实验选择流量划分策略(见前文介绍)。

实验启动:创建好的时间在达到实验设置的开始时间后自动启动,实验人员也可以对暂停的实验重新执行启动操作。

实验暂停:实验人员可以对执行中的实验执行暂停操作。

实验删除:实验人员可以删除已经停止的实验,正在执行的实验无法直接删除(需要先执行停止操作)

实验权限控制:实验的owner(创建者)对实验有启动、暂停、删除等权限,也即只能操作自己创建的实验。实验配置管理中心直接控制线上服务的模型和策略的执行,安全性就显得尤为重要。

实验持久化:实验的数据被存储到MySQL数据库中进行持久化。

实验分析与效果展示中心

实验分析和可视化效果展示是实验平台不可或缺的组成部分。在数据实时采集模块,实验ID以及实验参数数据(比如策略和模型参数)连同系统的业务日志数据一起被记录和采集。在这里可以实时查看到每个执行中实验(实验ID区分)的统计分析和效果对比数据,既可以对一个实验的不同参数集(实验bucket分桶)的结果数据进行横向对比(通常与基准实验作对比),也可以对实验基于时间维度的纵向效果作对比。

上图是达观数据推荐算法和某客户推荐算法时间维度纵向效果(点击率)对比。

在我们的实践中,通过对实验日志数据的实时采集和分析,可以实现对实验效果(比如CTR指标)进行准实时的对比分析和监控。如果发现实验(新算法策略)的效果指标出现异常,可以在实验配置管理中心及时调整实验参数或调整实验流程或停止实验(达观数据桂洪冠)。

在线服务系统(实验执行环境)

在线服务系统是实验执行的环境。在线服务系统加载了一个实验平台客户端组件,该组件主要有2个职责:

职责1:定时从数据库中同步实验数据信息

职责2:实验流量决策。对每个请求流量,根据实验的流量划分策略进行bucket分桶计算,获取对应bucket的实验参数数据(策略和模型参数)。请求携带被分配的实验参数数据流入线上服务模块。

各线上服务模块从请求中获取自己关心的实验参数数据进行相应的实验,并在记录日志时把实验ID和参数数据一同写入。

总结

本文以谷歌2010年发布的分层实验框架为参考,阐述了分层实验模型的域、层、实验等基本概念,进一步分析了分层模型的基本特性、实验流量划分策略、分流条件以及灰度发布方法等内容。然后,重点介绍了达观数据分层实验平台架构的实验配置中心、效果分析与展示中心、在线服务系统(实验执行环境)等主要模块,描述了从实验创建到实验执行再到实验结果分析的全过程。

达观数据分层实验平台同时运行着数十个面向不同客户的多个系统应用的策略和模型迭代优化实验,已经成为公司基础平台体系架构中非常重要的组成部分。

未来展望

未来我们希望把达观数据分层实验平台做成开放的一站式实验服务平台,把我们的平台实验能力输出给更多的客户和合作伙伴,大家基于这个平台相互学习合作共赢。

参考文献

1.Diane Tang, Ashish Agarwal, Deirdre O’Brien, Mike Meyer   Overlapping Experiment Infrastructure: More, Better, Faster Experimentation

2.阿里妈妈大规模在线分层实验实践http://www.infoq.com/cn/articles/alimama-large-scale-online-hierarchical-experiment/

关于作者

桂洪冠,达观数据联合创始人,中国计算机学会CCF会员,自然语言处理技术专家。在参与创办达观数据前,曾在腾讯文学、阿里巴巴、新浪微博等知名企业担任数据挖掘高级技术管理工作。桂洪冠在数据技术领域拥有6项国家发明专利,中国科学技术大学计算机硕士学位。在大数据架构与核心算法以及文本智能处理等领域有深厚的积累和丰富的实战经验。

“达人”计划丨达观数据2019届校园招聘正式启动

一 Who we are

用理解分析情景

用热诚驱动革新

用AI开拓未来

为有志于在人工智能NLP领域发展的同学

提供一条有趣、钱多、目标明确的赛道

为客户提供文本智能处理解决方案

以一流文本挖掘技赋能企业转型

AI趋势中一起破浪前行!

二 招聘岗位

AI算法工程师
自然语言处理,搜索算法,推荐算法,计算机视觉。
软件开发工程师
python后端开发、java后端、大数据开发方向;docker、k8s、自动化运维方向。
前端开发工程师
开发公司官网、移动端产品,实现业务功能和交互效果,向全栈工程师发展。
AI行业研究员
对相关行业和上市公司进行持续地跟踪和深入研究,把握行业走向和周期运行趋势。
产品经理(B端)
需求收集、产品设计、文档撰写、竞品分析,持续优化产品的用户体验,推进产品市场化。

三 培养计划

大牛带教

1V1导师制,入职不孤单,搬砖不迷茫
学无止境

达观大讲堂(内部达人、外部大咖每周分享,干货满满or趣味与脑洞向topic,工作生活两不误)
神秘组织

达模院(季度之星、最佳新人、最佳成长等季度奖项,等你来pick)
打怪升级

每年两次公开透明的晋升机会,9级职级体系,不断进阶
生活保障走心的生日礼物和节日福利,实用派or文艺派,兼容个性化需求;跨组团建基金、聚餐经费,每季度请花完预算,随你到处浪;补充医疗保险、年终多薪、项目奖金、出差补贴、兴趣club、人生大事红包
一夜暴富

优秀达人的股票期权计划

达观风采

四 招聘流程

空中宣讲        10月最后一周简历投递  2018.10-2018.12笔试面试  2018.10-2019.01

录用通知  2018.11-2019.02

实习阶段  2019.01-毕业日期

正式入职      以毕业时间为准

2018年10月,空中宣讲会将登陆直播平台,关注达观数据官网、微信公众号、知乎专栏,获取具体时间与直播链接,

参与互动,

更有干货满满的人工智能礼包相送~

五 投递渠道

快来51job、智联招聘、BOSS直聘、实习僧、大街网搜索 达观数据 投递校招类岗位或直接发送简历至hr@datagrand.com

邮件标题:姓名-投递岗位-学校-专业-毕业年月

加入官方校招qq群:931328675

HR小姐姐们会尽快联系大家~

一步步教你轻松学主成分分析PCA降维算法

摘要:主成分分析(英语:Principal components analysis,PCA)是一种分析、简化数据集的技术。主成分分析经常用于减少数据集的维数,同时保持数据集中的对方差贡献最大的特征。常常应用在文本处理、人脸识别、图片识别、自然语言处理等领域。可以做在数据预处理阶段非常重要的一环,本文首先对基本概念进行介绍,然后给出PCA算法思想、流程、优缺点等等。最后通过一个综合案例去实现应用。(本文原创,转载必须注明出处.)

继续阅读

达观数据曾彦能:如何用深度学习做好长文本分类与法律文书智能化处理

在NLP领域中,文本分类舆情分析等任务相较于文本抽取,和摘要等任务更容易获得大量标注数据。因此在文本分类领域中深度学习相较于传统方法更容易获得比较好的效果。正是有了文本分类模型的快速演进,海量的法律文书可以通过智能化处理来极大地提高效率。我们今天就来分析一下当前state of art的文本分类模型以及他们在法律文书智能化中的应用。

文本分类领域走过路过不可错过的深度学习模型主要有FastText,TextCNN,HAN,DPCNN。本文试图在实践之后总结一下这些这些分类模型的理论框架,把这些模型相互联系起来,让大家在选择模型与调参的时候能有一些直觉与灵感。在深度学习这个实践为王的领域常有人质疑理论理论无用,我个人的感受是理论首先在根据数据特征筛选模型的时候非常有用,其次在调参的过程中也能大幅提升效率,更重要的是调不出结果的时候,往往脑海里的那一句“这个模型不应该是这样的结果”,以及“这不科学”提供了坚持方向信心。

一、文本分类模型详解

1. FastText

其中FastText结构特别简单,对于速度要求特别高场合适用,他把一篇文章中所有的词向量(还可以加上N-gram向量)直接相加求均值,然后过一个单层神经网络来得出最后的分类结果。很显然,这样的做法对于复杂的文本分类任务来说丢失了太多的信息。FastText的一种简单的增强模型是DAN,改变在于在词向量平均完成后多叠了几层全连接神经网络。对应地,FastText也可以看成是DAN全连接神经网络层数为1的的一种特例。

图1 2层DAN网络

需要特别注意的是,对于不加n-gram向量的FastText模型,他不可能去分辨否定词的位置,看下面的两句话:

我不喜欢这类电影,但是喜欢这一个。

我喜欢这类电影,但是不喜欢这一个。

这样的两句句子经过词向量平均以后已经送入单层神经网络的时候已经完全一模一样了,分类器不可能分辨出这两句话的区别,只有添加n-gram特征以后才可能有区别。因此,在实际应用的时候需要对你的数据有足够的了解。

2. TextCNN

TextCNN相较于fastText模型的结构会复杂一些,在2014年提出,他使用了卷积 + 最大池化这两个在图像领域非常成功的好基友组合。我们先看一下他的结构。如下图所示,示意图中第一层输入为7*5的词向量矩阵,其中词向量维度为5,句子长度为7,然后第二层使用了3组宽度分别为2、3、4的卷积核,图中每种宽度的卷积核使用了两个。

其中每个卷积核在整个句子长度上滑动,得到n个激活值,图中卷积核滑动的过程中没有使用padding,因此宽度为4的卷积核在长度为7的句子上滑动得到4个特征值。然后出场的就是卷积的好基友全局池化了,每一个卷积核输出的特征值列向量通过在整个句子长度上取最大值得到了6个特征值组成的feature map来供后级分类器作为分类的依据。

图2 TextCNN结构

我们知道图像处理中卷积的作用是在整幅图像中计算各个局部区域与卷积核的相似度,一般前几层的卷积核是可以很方便地做可视化的,可视化的结果是前几层的卷积核是在原始输入图像中寻找一些简单的线条。NLP中的卷积核没法做可视化,那么是不是就不能理解他在做什么了呢,其实可以通过模型的结构来来推断他的作用。因为TextCNN中卷积过后直接就是全局max pooling,那么它只能是在卷积的过程中计算与某些关键词的相似度,然后通过max pooling层来得出模型关注那些关键词是否在整个输入文本中出现,以及最相似的关键词与卷积核的相似度最大有多大。我们假设中文输出为字向量,理想情况下一个卷积核代表一个关键词,如下图所示:

图3 TextCNN卷积核的意义示意图

比如说一个2分类舆情分析任务中,如果把整个模型当成一个黑箱,那么去检测他的输出结果,会发现这个模型对于输入文本中是否含有“喜欢”,“热爱”这样的词特别敏感,那么他是怎么做到的呢?整个模型中能够做到遍历整个句子去计算关键词相似度的只有卷积的部分,因为后面直接是对整个句子长度的max pooling。但是因为模型面对的是字向量,并不是字,所以他一个卷积核可能是只学了半个关键词词向量,然后还有另外的卷积核学了另外半个关键词词向量,最后在分类器的地方这些特征值被累加得到了最终的结果。

TextCNN模型最大的问题也是这个全局的max pooling丢失了结构信息,因此很难去发现文本中的转折关系等复杂模式,TextCNN只能知道哪些关键词是否在文本中出现了,以及相似度强度分布,而不可能知道哪些关键词出现了几次以及出现这些关键词出现顺序。假想一下如果把这个中间结果给人来判断,人类也很难得到对于复杂文本的分类结果,所以机器显然也做不到。针对这个问题,可以尝试k-max pooling做一些优化,k-max pooling针对每个卷积核都不只保留最大的值,他保留前k个最大值,并且保留这些值出现的顺序,也即按照文本中的位置顺序来排列这k个最大值。在某些比较复杂的文本上相对于1-max pooling会有提升。

3. HAN(Hierarchy Attention Network)

相较于TextCNN,HAN最大的进步在于完全保留了文章的结构信息,并且特别难能可贵的是,基于attention结构有很强的解释性。

他的结构如下图所示:

图4 HAN结构

输入词向量序列后,通过词级别的Bi-GRU后,每个词都会有一个对应的Bi-GRU输出的隐向量h,再通过uw向量与每个时间步的h向量点积得到attention权重,然后把h序列做一个根据attention权重的加权和,得到句子summary向量s2,每个句子再通过同样的Bi-GRU结构再加attention得到最终输出的文档特征向量v向量,然后v向量通过后级dense层再加分类器得到最终的文本分类结果。模型结构非常符合人的从词->句子->再到篇章的理解过程。

最重要的是该模型在提供了更好的分类精度的情况下,可视化效果非常好。同时在调参过程中,我们发现attention部分对于模型的表达能力影响非常大,整个模型在所有位置调整L2-Loss对模型表达能力带来的影响远不如在两处attention的地方大,这同时也能解释为什么可视化效果比较好,因为attention对于模型的输出贡献很大,而attention又恰恰是可以可视化的。

下面我们来看一下他在法律领域罪名预测任务上的可视化效果。下面的可视化的结果并不是找了极少数效果好的,而是大部分情况下模型的可视化能够解释他的输出。需要注意的是,此处为了让不太重要句子中相对重要的词并不完全不可见,词的亮度=sqrt(句子权重)*词权重。

在非常长的文本中,HAN觉得中间那些完全是废话,不如那句“公诉机关认为”有用,就放弃了。

图5 HAN attention可视化1

如下图所示,模型虽然在文本第二行中看到了窃取的字样,但是他认为这个案件中主要的事件是抢劫,这就是保留文本结构的好处。

图6 HAN attention可视化2

可以看到并不是所有的深度学习模型都是不可以理解的,这种可解释性也会给实际应用带来很多帮助。

4 DPCNN

上面的几个模型,论神经网络的层数,都不深,大致就只有2~3层左右。大家都知道何凯明大神的ResNet是CV中的里程碑,15年参加ImageNet的时候top-5误差率相较于上一年的冠军GoogleNet直接降低了将近一半,证明了网络的深度是非常重要的。

图7 ImageNet历年冠军

那么问题来了,在文本分类领域网络深度提升会带来分类精度的大幅提升吗?我们在一些比较复杂的任务中,以及数据量比较大(百万级)的情况下有提升,但不是ResNet那种决定性的提升。

DPCNN的主要结构如下图所示:

图8 DPCNN结构

从词向量开始(本文的重点在于模型的大结构,因此不去详解文中的region embedding部分,直接将整个部分认为是一种词向量的输出。)先做了两次宽度为3,filter数量为250个的卷积,然后开始做两两相邻的max-pooling,假设输入句子长度padding到1024个词,那么在头两个卷积完成以后句子长度仍然为1024。在block 1的pooling位置,max pooling的width=3,stride=2,也即序列中相邻的3个时间步中每一维feature map取这三个位置中最大的一个留下,也即位置0,1,2中取一个最大值,然后,移动2个时间步,在2,3,4时间步中取一次max,那么pooling输出的序列长度就是511。

后面以此类推,序列长度是呈指数级下降的,这也是文章名字Deep Pyramid的由来。然后通过两个卷积的非线性变换,提取更深层次的特征,再在输出的地方叠加上未经过两次卷积的quick connection通路(ResNet中使得深层网络更容易训练的关键)。因为每个block中的max pooling只是相邻的两个位置做max-pooling,所以每次丢失的结构信息很少,后面的卷积层又能提取更加抽象的特征出来。所以最终模型可以在不丢失太多结构信息的情况下,同时又做了比较深层的非线性变换。

我们实际测试中在非线性度要求比较高的分类任务中DPCNN会比HAN精度高,并且由于他是基于CNN的,训练速度比基于GRU的HAN也要快很多。

二、法律文书智能化应用

达观数据在法律文书智能化处理中也应用了上面的几个模型,并在此基础上做法律行业针对性的优化。在刚刚结束的“法研杯”法律人工智能大赛中达观数据代表队取得了单项三等奖的成绩。

以裁判文书智能化处理为例,达观数据可以通过上述的文本分类器根据一段犯罪事实来向法律工作者推荐与描述的犯罪事实相关的罪名,法律条文,甚至是刑期的预测等。

下面以裁判文书网的一篇裁判文书为例,我们截取其中的犯罪事实部分文字,输入模型。模型会根据输入的文字判断此段分类事实对应的罪名,并且高亮出犯罪事实中的关键内容。

截取裁判文书网中的犯罪事实部分:

图9 裁判文书样例

输入模型:

“公诉机关指控:2017年6月30日22时左右,被告人耿艳峰醉酒驾驶冀T×××××号比亚迪小型轿车沿东孙庄村东水泥路由西向东行驶,行至事发处,与对向被告人孙汉斌无证醉酒驾驶无牌二轮摩托车发生碰撞。造成两车不同程度损坏,孙汉斌受伤的道路交通事故。经衡水市公安局物证鉴定所检验:耿艳峰血液酒精含量为283.11mg/lOOmL;孙汉斌血液酒精含量为95.75mg/mL。经武强县交通警察大队认定:耿艳峰、孙汉斌均负此事故的同等责任。”

得到结果:

图10 模型输出结果

模型会输出预测的罪名以及相关法条的推荐结果,能够极大地提高律师的效率。并且模型还能将关键的句子以及词高亮出来给律师进一步仔细审阅提供方便。

目前在刑法相关的大量样本上罪名预测与相关法条推荐的准确率在90%左右。刑期由于存在不同年代不同地区存在一些差异,目前模型的输出结果还不能特别直观地给出评估。

三、总结

目前state of the art的深度学习文本发分类模型在十万~百万级以上的数据上已经能取得相当不错的效果,并且也有一些可解释性非常强的模型可用。要在实际业务中把文本分类模型用好,除了像文中深入分析理论以外,在大量的业务实践中总结经验也是必不可少的。达观在裁判文书处理等实际任务上实测输出结果也非常不错,并且达观的深度学习文本分类技术也会在各个业务应用中不断优化升级,希望能为法律行业的智能化以及效率优化作出一些贡献。

参考文献:

1.Joulin, Armand, et al. "Bag of Tricks forEfficient Text Classification." Proceedings of the 15th Conferenceof the European Chapter of the Association for Computational Linguistics:Volume 2, Short Papers. Vol. 2. 2017.

2.Iyyer, Mohit, et al. "Deep unorderedcomposition rivals syntactic methods for text classification." Proceedingsof the 53rd Annual Meeting of the Association for Computational Linguistics andthe 7th International Joint Conference on Natural Language Processing (Volume1: Long Papers). Vol. 1. 2015.

3.Kim, Yoon. "Convolutional Neural Networksfor Sentence Classification." Proceedings of the 2014 Conferenceon Empirical Methods in Natural Language Processing (EMNLP). 2014.

4.Yang, Zichao, et al. "Hierarchicalattention networks for document classification." Proceedings of the2016 Conference of the North American Chapter of the Association forComputational Linguistics: Human Language Technologies. 2016.

5.Johnson, Rie, and Tong Zhang. "Deeppyramid convolutional neural networks for text categorization." Proceedingsof the 55th Annual Meeting of the Association for Computational Linguistics(Volume 1: Long Papers). Vol. 1. 2017.

关于作者

曾彦能:达观数据NLP算法工程师,负责达观数据NLP深度学习算法的研究、优化,以及在文本挖掘系统中的具体应用。对文本分类,序列标注模型有深入的研究。曾作为主要成员之一代表达观数据参加2018中国"法研杯" 法律智能挑战赛获得单项三等奖。