作者归档:52nlp

自然语言处理工具包spaCy介绍

spaCy 是一个Python自然语言处理工具包,诞生于2014年年中,号称“Industrial-Strength Natural Language Processing in Python”,是具有工业级强度的Python NLP工具包。spaCy里大量使用了 Cython 来提高相关模块的性能,这个区别于学术性质更浓的Python NLTK,因此具有了业界应用的实际价值。

安装和编译 spaCy 比较方便,在ubuntu环境下,直接用pip安装即可:

sudo apt-get install build-essential python-dev git
sudo pip install -U spacy

不过安装完毕之后,需要下载相关的模型数据,以英文模型数据为例,可以用"all"参数下载所有的数据:

sudo python -m spacy.en.download all

或者可以分别下载相关的模型和用glove训练好的词向量数据:

# 这个过程下载英文tokenizer,词性标注,句法分析,命名实体识别相关的模型
python -m spacy.en.download parser

# 这个过程下载glove训练好的词向量数据
python -m spacy.en.download glove

下载好的数据放在spacy安装目录下的data里,以我的ubuntu为例:

textminer@textminer:/usr/local/lib/python2.7/dist-packages/spacy/data$ du -sh *
776M    en-1.1.0
774M    en_glove_cc_300_1m_vectors-1.0.0

进入到英文数据模型下:

textminer@textminer:/usr/local/lib/python2.7/dist-packages/spacy/data/en-1.1.0$ du -sh *
424M    deps
8.0K    meta.json
35M ner
12M pos
84K tokenizer
300M    vocab
6.3M    wordnet

可以用如下命令检查模型数据是否安装成功:

textminer@textminer:~$ python -c "import spacy; spacy.load('en'); print('OK')"
OK

也可以用pytest进行测试:

# 首先找到spacy的安装路径:
python -c "import os; import spacy; print(os.path.dirname(spacy.__file__))"
/usr/local/lib/python2.7/dist-packages/spacy

# 再安装pytest:
sudo python -m pip install -U pytest

# 最后进行测试:
python -m pytest /usr/local/lib/python2.7/dist-packages/spacy --vectors --model --slow
============================= test session starts ==============================
platform linux2 -- Python 2.7.12, pytest-3.0.4, py-1.4.31, pluggy-0.4.0
rootdir: /usr/local/lib/python2.7/dist-packages/spacy, inifile:
collected 318 items

../../usr/local/lib/python2.7/dist-packages/spacy/tests/test_matcher.py ........
../../usr/local/lib/python2.7/dist-packages/spacy/tests/matcher/test_entity_id.py ....
../../usr/local/lib/python2.7/dist-packages/spacy/tests/matcher/test_matcher_bugfixes.py .....
......
../../usr/local/lib/python2.7/dist-packages/spacy/tests/vocab/test_vocab.py .......Xx
../../usr/local/lib/python2.7/dist-packages/spacy/tests/website/test_api.py x...............
../../usr/local/lib/python2.7/dist-packages/spacy/tests/website/test_home.py ............

============== 310 passed, 5 xfailed, 3 xpassed in 53.95 seconds ===============

现在可以快速测试一下spaCy的相关功能,我们以英文数据为例,spaCy目前主要支持英文和德文,对其他语言的支持正在陆续加入:

textminer@textminer:~$ ipython
Python 2.7.12 (default, Jul  1 2016, 15:12:24)
Type "copyright", "credits" or "license" for more information.

IPython 2.4.1 -- An enhanced Interactive Python.
?         -> Introduction and overview of IPython's features.
%quickref -> Quick reference.
help      -> Python'
s own help system.
object?   -> Details about 'object', use 'object??' for extra details.

In [1]: import spacy          

# 加载英文模型数据,稍许等待
In [2]: nlp = spacy.load('en')

Word tokenize功能,spaCy 1.2版本加了中文tokenize接口,基于Jieba中文分词:

In [3]: test_doc = nlp(u"it's word tokenize test for spacy")            

In [4]: print(test_doc)
it's word tokenize test for spacy

In [5]: for token in test_doc:                                          
    print(token)
   ...:    
it
'
s
word
tokenize
test
for
spacy

英文断句:

In [6]: test_doc = nlp(u'Natural language processing (NLP) deals with the application of computational models to text or speech data. Application areas within NLP include automatic (machine) translation between languages; dialogue systems, which allow a human to interact with a machine using natural language; and information extraction, where the goal is to transform unstructured text into structured (database) representations that can be searched and browsed in flexible ways. NLP technologies are having a dramatic impact on the way people interact with computers, on the way people interact with each other through the use of language, and on the way people access the vast amount of linguistic data now in electronic form. From a scientific viewpoint, NLP involves fundamental questions of how to structure formal models (for example statistical models) of natural language phenomena, and of how to design algorithms that implement these models.')

In [7]: for sent in test_doc.sents:
    print(sent)
   ...:    
Natural language processing (NLP) deals with the application of computational models to text or speech data.
Application areas within NLP include automatic (machine) translation between languages; dialogue systems, which allow a human to interact with a machine using natural language; and information extraction, where the goal is to transform unstructured text into structured (database) representations that can be searched and browsed in flexible ways.
NLP technologies are having a dramatic impact on the way people interact with computers, on the way people interact with each other through the use of language, and on the way people access the vast amount of linguistic data now in electronic form.
From a scientific viewpoint, NLP involves fundamental questions of how to structure formal models (for example statistical models) of natural language phenomena, and of how to design algorithms that implement these models.


词干化(Lemmatize):

In [8]: test_doc = nlp(u"you are best. it is lemmatize test for spacy. I love these books")

In [9]: for token in test_doc:                                                      
    print(token, token.lemma_, token.lemma)
   ...:    
(you, u'you', 472)
(are, u'be', 488)
(best, u'good', 556)
(., u'.', 419)
(it, u'it', 473)
(is, u'be', 488)
(lemmatize, u'lemmatize', 1510296)
(test, u'test', 1351)
(for, u'for', 480)
(spacy, u'spacy', 173783)
(., u'.', 419)
(I, u'i', 570)
(love, u'love', 644)
(these, u'these', 642)
(books, u'book', 1011)

词性标注(POS Tagging):

In [10]: for token in test_doc:                                                    
    print(token, token.pos_, token.pos)
   ....:    
(you, u'PRON', 92)
(are, u'VERB', 97)
(best, u'ADJ', 82)
(., u'PUNCT', 94)
(it, u'PRON', 92)
(is, u'VERB', 97)
(lemmatize, u'ADJ', 82)
(test, u'NOUN', 89)
(for, u'ADP', 83)
(spacy, u'NOUN', 89)
(., u'PUNCT', 94)
(I, u'PRON', 92)
(love, u'VERB', 97)
(these, u'DET', 87)
(books, u'NOUN', 89)

命名实体识别(NER):

In [11]: test_doc = nlp(u"Rami Eid is studying at Stony Brook University in New York")

In [12]: for ent in test_doc.ents:
    print(ent, ent.label_, ent.label)
   ....:    
(Rami Eid, u'PERSON', 346)
(Stony Brook University, u'ORG', 349)
(New York, u'GPE', 350)

名词短语提取:

In [13]: test_doc = nlp(u'Natural language processing (NLP) deals with the application of computational models to text or speech data. Application areas within NLP include automatic (machine) translation between languages; dialogue systems, which allow a human to interact with a machine using natural language; and information extraction, where the goal is to transform unstructured text into structured (database) representations that can be searched and browsed in flexible ways. NLP technologies are having a dramatic impact on the way people interact with computers, on the way people interact with each other through the use of language, and on the way people access the vast amount of linguistic data now in electronic form. From a scientific viewpoint, NLP involves fundamental questions of how to structure formal models (for example statistical models) of natural language phenomena, and of how to design algorithms that implement these models.')


In [14]: for np in test_doc.noun_chunks:
    print(np)
   ....:    
Natural language processing
Natural language processing (NLP) deals
the application
computational models
text
speech
data
Application areas
NLP
automatic (machine) translation
languages
dialogue systems
a human
a machine
natural language
information extraction
the goal
unstructured text
structured (database) representations
flexible ways
NLP technologies
a dramatic impact
the way
people
computers
the way
people
the use
language
the way
people
the vast amount
linguistic data
electronic form
a scientific viewpoint
NLP
fundamental questions
formal models
example
natural language phenomena
algorithms
these models

基于词向量计算两个单词的相似度:

In [15]: test_doc = nlp(u"Apples and oranges are similar. Boots and hippos aren't.")

In [16]: apples = test_doc[0]

In [17]: print(apples)
Apples

In [18]: oranges = test_doc[2]

In [19]: print(oranges)
oranges

In [20]: boots = test_doc[6]

In [21]: print(boots)
Boots

In [22]: hippos = test_doc[8]

In [23]: print(hippos)
hippos

In [24]: apples.similarity(oranges)
Out[24]: 0.77809414836023805

In [25]: boots.similarity(hippos)
Out[25]: 0.038474555379008429

当然,spaCy还包括句法分析的相关功能等。另外值得关注的是 spaCy 从1.0版本起,加入了对深度学习工具的支持,例如 Tensorflow 和 Keras 等,这方面具体可以参考官方文档给出的一个对情感分析(Sentiment Analysis)模型进行分析的例子:Hooking a deep learning model into spaCy.

参考:
spaCy官方文档
Getting Started with spaCy

注:原创文章,转载请注明出处及保留链接“我爱自然语言处理”:http://www.52nlp.cn

本文链接地址:自然语言处理工具包spaCy介绍 http://www.52nlp.cn/?p=9386

反向传播算法入门资源索引

1、一切从维基百科开始,大致了解一个全貌:
反向传播算法 Backpropagation

2、拿起纸和笔,再加上ipython or 计算器,通过一个例子直观感受反向传播算法:
A Step by Step Backpropagation Example

3、再玩一下上篇例子对应的200多行Python代码: Neural Network with Backpropagation

4、有了上述直观的反向传播算法体验,可以从1986年这篇经典的论文入手了:Learning representations by back-propagating errors

5、如果还是觉得晦涩,推荐读一下"Neural Networks and Deep Learning"这本深度学习在线书籍的第二章:How the backpropagation algorithm works

6、或者可以通过油管看一下这个神经网络教程的前几节关于反向传播算法的视频: Neural Network Tutorial

7、hankcs 同学对于上述视频和相关材料有一个解读: 反向传播神经网络极简入门

8、这里还有一个比较简洁的数学推导:Derivation of Backpropagation

9、神牛gogo 同学对反向传播算法原理及代码解读:神经网络反向传播的数学原理

10、关于反向传播算法,更本质一个解释:自动微分反向模式(Reverse-mode differentiation )Calculus on Computational Graphs: Backpropagation

注:原创文章,转载请注明出处及保留链接“我爱自然语言处理”:http://www.52nlp.cn

本文链接地址:反向传播算法入门资源索引 http://www.52nlp.cn/?p=9350

深度学习主机环境配置: Ubuntu16.04+GeForce GTX 1080+TensorFlow

接上文《深度学习主机环境配置: Ubuntu16.04+Nvidia GTX 1080+CUDA8.0》,我们继续来安装 TensorFlow,使其支持GeForce GTX 1080显卡。

1 下载和安装cuDNN

cuDNN全称 CUDA Deep Neural Network library,是NVIDIA专门针对深度神经网络设计的一套GPU计算加速库,被广泛用于各种深度学习框架,例如Caffe, TensorFlow, Theano, Torch, CNTK等。

The NVIDIA CUDA® Deep Neural Network library (cuDNN) is a GPU-accelerated library of primitives for deep neural networks. cuDNN provides highly tuned implementations for standard routines such as forward and backward convolution, pooling, normalization, and activation layers. cuDNN is part of the NVIDIA Deep Learning SDK.

Deep learning researchers and framework developers worldwide rely on cuDNN for high-performance GPU acceleration. It allows them to focus on training neural networks and developing software applications rather than spending time on low-level GPU performance tuning. cuDNN accelerates widely used deep learning frameworks, including Caffe, TensorFlow, Theano, Torch, and CNTK. See supported frameworks for more details.

首先需要下载cuDNN,直接从Nvidia官方下载链接选择一个版本,不过下载cuDNN前同样需要登录甚至填写一个简单的调查问卷: https://developer.nvidia.com/rdp/cudnn-download,这里选择的是支持CUDA8.0的cuDNN v5版本,而支持CUDA8的5.1版本虽然显示在下载选择项里,但是提示:cuDNN 5.1 RC for CUDA 8RC will be available soon - please check back again.

屏幕快照 2016-07-17 上午11.17.39

安装cuDNN比较简单,解压后把相应的文件拷贝到对应的CUDA目录下即可:

tar -zxvf cudnn-8.0-linux-x64-v5.0-ga.tgz

cuda/include/cudnn.h
cuda/lib64/libcudnn.so
cuda/lib64/libcudnn.so.5
cuda/lib64/libcudnn.so.5.0.5
cuda/lib64/libcudnn_static.a

sudo cp cuda/include/cudnn.h /usr/local/cuda/include/
sudo cp cuda/lib64/libcudnn* /usr/local/cuda/lib64/
sudo chmod a+r /usr/local/cuda/include/cudnn.h
sudo chmod a+r /usr/local/cuda/lib64/libcudnn*

继续阅读

深度学习主机环境配置: Ubuntu16.04+Nvidia GTX 1080+CUDA8.0

接上文《深度学习主机攒机小记》,这台GTX1080主机准备好之后,就是配置深度学习环境了,这里选择了比较熟悉Ubuntu系统,不过是最新的16.04版本,另外在Nvidia GTX1080的基础上安装相关GPU驱动,外加CUDA8.0,因为都比较新,所以踩了很多坑。

1. 安装Ubuntu16.04

不考虑双系统,直接安装 Ubuntu16.04,从ubuntu官方下载64位版本: ubuntu-16.04-desktop-amd64.iso 。

在MAC下制作了 Ubuntu USB 安装盘,具体方法可参考: 在MAC下使用ISO制作Linux的安装USB盘,之后通过Bios引导U盘启动安装Ubuntu系统:

1)一开始安装就踩了一个坑,选择"Install Ubuntu"回车后过一会儿屏幕显示“输入不支持”,google了好多方案,最终和ubuntu对显卡的支持有关,需要手动添加显卡选项: nomodeset,使其支持Nvidia系列显卡,参考:安装ubuntu黑屏问题的解决 or How do I set 'nomodeset' after I've already installed Ubuntu?

2) 磁盘分区,全部干掉之前主机自带的Window 10系统,分区为 /boot, /, /home 等几个目录,同时把第二块4T硬盘也挂载了上去,作为数据盘。

3)安装完毕后Ubuntu 16.04的分辨率很低,在显卡驱动未安装之前,可以手动修改一下grub文件:

sudo vim /etc/default/grub

# The resolution used on graphical terminal
# note that you can use only modes which your graphic card supports via VBE
# you can see them in real GRUB with the command `vbeinfo'
#GRUB_GFXMODE=640x480
# 这里分辨率自行设置
GRUB_GFXMODE=1024x768

sudo update-grub

4)安装SSH Server,这样可以远程ssh访问这台GTX1080主机:

sudo apt-get install openssh-server

5)更新Ubuntu16.04源,用的是中科大的源

cd /etc/apt/
sudo cp sources.list sources.list.bak
sudo vi sources.list

把下面的这些源添加到source.list文件头部:

deb http://mirrors.ustc.edu.cn/ubuntu/ xenial main restricted universe multiverse
deb http://mirrors.ustc.edu.cn/ubuntu/ xenial-security main restricted universe multiverse
deb http://mirrors.ustc.edu.cn/ubuntu/ xenial-updates main restricted universe multiverse
deb http://mirrors.ustc.edu.cn/ubuntu/ xenial-proposed main restricted universe multiverse
deb http://mirrors.ustc.edu.cn/ubuntu/ xenial-backports main restricted universe multiverse
deb-src http://mirrors.ustc.edu.cn/ubuntu/ xenial main restricted universe multiverse
deb-src http://mirrors.ustc.edu.cn/ubuntu/ xenial-security main restricted universe multiverse
deb-src http://mirrors.ustc.edu.cn/ubuntu/ xenial-updates main restricted universe multiverse
deb-src http://mirrors.ustc.edu.cn/ubuntu/ xenial-proposed main restricted universe multiverse
deb-src http://mirrors.ustc.edu.cn/ubuntu/ xenial-backports main restricted universe multiverse

最后更新源和更新已安装的包:

sudo apt-get update
sudo apt-get upgrade
继续阅读

Mecab安装过程中的一些坑

先说一点题外话,最近发现 Linode 因为庆祝13周年活动将所有的Plan加了一倍,又来了一次加量不加价,这一下子和别的产品拉开了差距,可惜目前Linode日本节点并不参加活动,否则52nlp目前所用的这台 Linode 主机性能就可以翻倍了。不过还是搞了一台 Linode 8GB(8G内存,4核,96G SSD硬盘容量) 的VPS套餐(40$/mo),选择了美国西部的 Fremont 节点,据说国内连接速度很不错。在上面选择了64位的Ubuntu14.04 版本,但是在这个环境下安装Mecab的过程中接连踩了几个坑,所以记录一下。

这里曾写过“Mecab中文分词”系列文章,也在github上发布过一个中文分词项目 MeCab-Chinese:Chinese morphological analysis with Word Segment and POS Tagging data for MeCab ,但是这个过程中没有怎么写到Mecab安装的问题,因为之前觉得rickjin的这篇《日文分词器 Mecab 文档》应该足够参考,自己当时也在Mac OS和Ubuntu环境下安装成功并测试,印象貌似不是太复杂。这次在Ubuntu 14.04的环境安装的时候,遇到了几个小坑,记录一下,做个备忘,仅供参考。
继续阅读

深度学习主机攒机小记

五月中下旬的时候,GTX1080的公布和发售直接刺激了我攒一台深度学习主机的欲望,攒机对于我来说已经相隔十多年,大学时候的第一台PC就是攒出来的,其实也就是在5000元的预算内,去电脑城里找商家组装了一台台式机,美其名曰DIY。

虽然已经锁定显卡,但是对于其他的搭配还是很模糊,只是需要“好CPU”,“大内存", “大硬盘", 于是开始google “深度学习电脑”,“深度学习服务器”,“深度学习PC”, “深度学习主机”,“深度学习机器”,“深度学习工作站”这些关键词,并很快锁定了这篇文章《如何搭建一台深度学习服务器》作为主要参考:

硬件选择:基本思路是单显卡机器,保留升级空间

......

CPU选择:
在深度学习任务中,CPU并不负责主要任务,单显卡计算时只有一个核心达到100%负荷,所以CPU的核心数量和显卡数量一致即可,太多没有必要,但是处理PCIE的带宽要到40。

主板选择:
需要支持X99架构,支持PCIe3.0,还要支持4通道DDR4内存架构。如果要搞四显卡并行,PCIE带宽支持要达到40,并且支持4-Way NVIDA SLI技术。

内存:
达到显存的二倍即可,当然有钱的话越大越好。

电源问题:一个显卡的功率接近300W,四显卡建议电源在1500W以上,为了以后扩展,选择了1600W的电源。

机箱散热:
因为各种部件相当庞大,需要有良好散热功能的大机箱,选择了Tt Thermaltake Core V51机箱,标配3个12cm风扇。未来如果需要还可以加装水冷设备。

......

最后的硬件配置:
CPU: Intel X99平台 i7 5960K
内存: DDR4 2800 32G(8G*4)
主板: GIGABYTE X99-UD4
显卡: GTX Titan X
硬盘: SSD+普通硬盘

继续阅读

在微信公众号里使用LaTeX数学公式

因为有同学在微信后台咨询这个问题,所以这里简单记录一下,其实自己之前也摸索了一些方法,不是太完美,目前所使用的这个方法算是折中后比较好的。

这段时间在鼓捣“NLPJob”这个公众号,特别是微信公众号支持“原创声明”后,就很乐意将52nlp上积攒的一些文章搬上去,但是逐渐会遇到一些数学公式的问题。目前在52nlp上用的是mathjax完美支持LaTeX数学公式展现,但是微信公众号的编辑器没有这个支持,另外mathjax支持的公式形式不是图片形式,所以不能直接将文章拷贝上去,但是如果是数学公式图片,微信编辑器可以直接拷贝,所以最直接的想法就是将mathjax支持的LaTeX公式转换为公式图片保存在文章中,然后再全文拷贝到微信公众号编辑器中。

其实在mathjax之前,网页上的很多数学公式都是用这种折中的方式,包括很多wordpress数学公式插件,当年我也因为52nlp上的公式问题还自己动手写了一个小的wordpress插件,但是当mathjax出现之后,之前的方案就显得很一般了。所以就开始尝试找一下支持img缓存的LaTeX公式插件,不过多数都不满意或者有瑕疵,甚至自己又开始动手修改代码,然后blablabla....,最终发现 quicklatex这个神器和它的wordpress插件QuickLaTeX,几乎完美支持和兼容Mathjax所支持的LaTeX数学公式。方法很简单,只要在wordpress中安装quicklatex,然后在文章的开头添加一个:[latexpage] ,然后文章中所有的latext公式都会转换为图片形式,类似昨天发出的rickjin的这篇文章:LDA数学八卦:神奇的Gamma函数(1)。当然需要先在wordpress中完成编辑转换,再全文拷贝到微信公众号中,微信会自动的将这些图片上传到它自己的图片服务器上。不过依然希望微信公众号编辑器能早日支持LaTeX公式编辑甚至Mathjax。

斯坦福大学深度学习与自然语言处理第四讲:词窗口分类和神经网络

斯坦福大学在三月份开设了一门“深度学习与自然语言处理”的课程:CS224d: Deep Learning for Natural Language Processing,授课老师是青年才俊 Richard Socher,以下为相关的课程笔记。

第四讲:词窗口分类和神经网络(Word Window Classification and Neural Networks)

推荐阅读材料:

  1. [UFLDL tutorial]
  2. [Learning Representations by Backpropogating Errors]
  3. 第四讲Slides [slides]
  4. 第四讲视频 [video]

以下是第四讲的相关笔记,主要参考自课程的slides,视频和其他相关资料。
继续阅读

出门问问宣布完成由Google投资的C轮融资,累计融资7500万美金

注:出门问问是我们的老朋友,创始人李志飞也是NLP和机器翻译领域的大牛,今天出门问问拿到了Google的C轮融资,志飞兄第一时间和我分享了这条新闻,太牛了。

人工智能创业公司出门问问(Mobvoi),于近日完成了由Google投资的C轮融资,累计融资7500万美金。现有投资方包括红杉资本、真格基金,SIG海纳亚洲、圆美光电、及歌尔声学。此轮投资Google并不控股,出门问问团队依旧有绝对控制权。

此次由Google投资的C轮融资,能够保证出门问问在人工智能领域长期持续深耕,专注核心技术上的进一步研发,在可穿戴、车载以及机器人领域拓展新的人机交互产品形态,更深入地完善用户体验,在吸引全球顶尖技术与商务人才上更具优势。对于海外市场的扩展,此次融资也将发挥非常重要的作用。

Google 企业发展部副总裁Don Harrison 说到选择投资出门问问的原因:“出门问问研发了非常独特自成体系的语音识别与自然语言处理技术。我们被他们的创新科技与发展潜力打动,所以我们很迅速地决定用投资的方式帮助他们在未来快速成长。”

红杉资本全球执行合伙人沈南鹏评价:“出门问问一直处于高速的不断创新过程中,从移动app到硬件产品到语音搜索平台,不同形式的产品背后是团队长期以来形成的强大技术核心,获得Google的投资是对这种中国原创能力的最好肯定。我很高兴Google这样的巨头看好出门问问,并和我们一起投入到这支高速创新的团队中。”

真格基金创始人徐小平说:“我第一次遇见谷歌科学家李志飞博士,是三年前。那时候,他的语音搜索创业计划,真是一个“异想天开”的梦。志飞相信自己的梦,相信自己的技术,相信市场对这个技术产品的需求,历经万难,终于“搜索”到了属于他自己的那片天空。志飞的创业历程,是又一个中国好故事,会激励更多人追求并实现自己的好梦。”

志同道合是此次融资达成的最重要的原因。扎实做技术和产品,运用科技的力量改变人们的日常生活,是出门问问一直笃信的价值观。

出门问问CEO 李志飞表示:“引入Google的投资,不仅意味Google对于我们技术的认可,更是源于双方持有共同的价值观,通过对人工智能技术的极致追求,打造毫不妥协的用户体验。”

与Google相似,出门问问也是信仰“工程师文化”的团队,强大的研发团队由Google前科学家、人工智能专家领衔,团队成员来自哈佛、MIT、斯坦福、剑桥、清华等名校名企。

此次融资是中国人工智能创业公司首次获得像Google这样的国际技术巨头的投资与认可。这在某种程度上说明,在人工智能领域,中国的创业公司不容小觑。
继续阅读

用MeCab打造一套实用的中文分词系统(四):MeCab增量更新

最近在处理NLPJob的一些数据,发现之前训练的Mecab中文分词工具包还有一些问题,所以想到了为NLPJob定制一个MeCab中文分词器,最简单的方法就是整理一批相关的词条,可以通过词条追加的方法加到原有的Mecab中文分词词典中去,这个可以参考《日文分词器Mecab文档》中介绍的“词条追加”方法,既可以放到系统词典中,也可以放到用户词典中,很方便。不过这个还不是最佳方案,之前有用户在《用MeCab打造一套实用的中文分词系统》中留言:

你好, 我在win7上训练的时候mecab-cost-train的时候会崩溃,请问下我能每次只训练一小部分,然后最后一起发布嘛?

google了一下,发现MeCab的作者Taku Kudo在google plus上给了一个增量更新的方案:

https://plus.google.com/107334123935896432800/posts/3g83gkBoSYE

当然这篇文章是用日文写得,不过如果熟悉Mecab的相关脚本,很容易看懂。增量更新除了可以解决在小内存机器上分批训练模型外,也可以很容易在一个已有的基准分词模型上定制特定领域的分词器,既更新词典,也更新模型,这才是我理想中NLPJob中文分词器的定制之路。
继续阅读