标签归档:深度学习

从零开始搭建深度学习服务器: 1080TI四卡并行(Ubuntu16.04+CUDA9.2+cuDNN7.1+TensorFlow+Keras)

Deep Learning Specialization on Coursera

这个系列写了好几篇文章,这是相关文章的索引,仅供参考:

最近公司又弄了一套4卡1080TI机器,配置基本上和之前是一致的,只是显卡换成了技嘉的伪公版1080TI:技嘉GIGABYTE GTX1080Ti 涡轮风扇108TTURBO-11GD

部件	型号	价格	链接	备注
CPU	英特尔(Intel)酷睿六核i7-6850K 盒装CPU处理器 	4599	http://item.jd.com/11814000696.html	
散热器	美商海盗船 H55 水冷	449	https://item.jd.com/10850633518.html	
主板	华硕(ASUS)华硕 X99-E WS/USB 3.1工作站主板	4759	
内存	美商海盗船(USCORSAIR) 复仇者LPX DDR4 3000 32GB(16Gx4条)  	2799 * 2	https://item.jd.com/1990572.html	
SSD	三星(SAMSUNG) 960 EVO 250G M.2 NVMe 固态硬盘	599	https://item.jd.com/3739097.html		
硬盘	希捷(SEAGATE)酷鱼系列 4TB 5900转 台式机机械硬盘 * 2 	629 * 2	https://item.jd.com/4220257.html	
电源	美商海盗船 AX1500i 全模组电源 80Plus金牌	3699	https://item.jd.com/10783917878.html
机箱	美商海盗船 AIR540 USB3.0 	949	http://item.jd.com/12173900062.html
显卡	技嘉(GIGABYTE) GTX1080Ti 11GB 非公版高端游戏显卡深度学习涡轮 * 4 7400 * 4    https://item.jd.com/10583752777.html

这台深度学习主机大概是这样的:

深度学习主机

安装完Ubuntu16.04之后,我又开始了CUDA、cuDnn等深度学习环境和工具的安装之旅,时隔大半年,又有了很多变化,特别是CUDA9.x和cuDnn7.x已经成了标配,这里记录一下。

安装CUDA9.x

依然从英伟达官方下载当前的CUDA版本,我选择了最新的CUDA9.2:

点选完对应Ubuntu16.04的CUDA9.2 deb版本之后,英伟达官方主页会给出安装提示:

Installation Instructions:
`sudo dpkg -i cuda-repo-ubuntu1604-9-2-local_9.2.88-1_amd64.deb`
`sudo apt-key add /var/cuda-repo-/7fa2af80.pub`
`sudo apt-get update`
`sudo apt-get install cuda`

在下载完大概1.2G的cuda deb版本之后,实际安装命令是这样的:

sudo dpkg -i cuda-repo-ubuntu1604-9-2-local_9.2.88-1_amd64.deb
sudo apt-key add /var/cuda-repo-9-2-local/7fa2af80.pub
sudo apt-get update
sudo apt-get install cuda

官方CUDA下载下载页面还附带了一个cuBLAS 9.2 Patch更新,官方强烈建议安装:

This update includes fix to cublas GEMM APIs on V100 Tensor Core GPUs when used with default algorithm CUBLAS_GEMM_DEFAULT_TENSOR_OP. We strongly recommend installing this update as part of CUDA Toolkit 9.2 installation.

可以用如下方式安装这个Patch更新:

sudo dpkg -i cuda-repo-ubuntu1604-9-2-local-cublas-update-1_1.0-1_amd64.deb 
sudo apt-get update  
sudo apt-get upgrade cuda

CUDA9.2安装完毕之后,1080TI的显卡驱动也附带安装了,可以重启机器,然后用 nvidia-smi 命令查看一下:

最后在在 ~/.bashrc 中设置环境变量:

export PATH=/usr/local/cuda/bin${PATH:+:${PATH}}
export LD_LIBRARY_PATH=/usr/local/cuda/lib64${LD_LIBRARY_PATH:+:${LD_LIBRARY_PATH}}
export CUDA_HOME=/usr/local/cuda

运行 source ~/.bashrc 使其生效。

安装cuDNN7.x

同样去英伟达官网的cuDNN下载页面:https://developer.nvidia.com/rdp/cudnn-download,最新版本是cuDNN7.1.4,有三个版本可以选择,分别面向CUDA8.0, CUDA9.0, CUDA9.2:

cudnn7.1.4 cuda9.2 ubuntu16.04

下载完cuDNN7.1的压缩包之后解压,然后将相关文件拷贝到cuda的系统路径下即可:

tar -zxvf cudnn-9.2-linux-x64-v7.1.tgz
sudo cp cuda/include/cudnn.h /usr/local/cuda/include/
sudo cp cuda/lib64/libcudnn* /usr/local/cuda/lib64/ -d 
sudo chmod a+r /usr/local/cuda/include/cudnn.h
sudo chmod a+r /usr/local/cuda/lib64/libcudnn*

安装TensorFlow 1.8

TensorFlow的安装变得越来越简单,现在TensorFlow的官网也有中文安装文档了:https://www.tensorflow.org/install/install_linux?hl=zh-cn , 我们Follow这个文档,用Virtualenv的安装方式进行TensorFlow的安装,不过首先要配置一下基础环境。

首先在Ubuntu16.04里安装 libcupti-dev 库:

这是 NVIDIA CUDA 分析工具接口。此库提供高级分析支持。要安装此库,请针对 CUDA 工具包 8.0 或更高版本发出以下命令:

$ sudo apt-get install cuda-command-line-tools
并将其路径添加到您的 LD_LIBRARY_PATH 环境变量中:

$ export LD_LIBRARY_PATH=$LD_LIBRARY_PATH:/usr/local/cuda/extras/CUPTI/lib64
对于 CUDA 工具包 7.5 或更低版本,请发出以下命令:

$ sudo apt-get install libcupti-dev

然而我运行“sudo apt-get install cuda-command-line-tools”命令后得到的却是:

E: 无法定位软件包 cuda-command-line-tools

Google后发现其实在安装CUDA9.2的时候,这个包已经安装了,在CUDA的路径下这个库已经有了:

/usr/local/cuda/extras/CUPTI/lib64$ ls
libcupti.so  libcupti.so.9.2  libcupti.so.9.2.88

现在只需要将其加入到环境变量中,在~/.bashrc中添加如下声明并令source ~/.bashrc另其生效即可:

export LD_LIBRARY_PATH=$LD_LIBRARY_PATH:/usr/local/cuda/extras/CUPTI/lib64

剩下的就更简单了:

sudo apt-get install python-pip python-dev python-virtualenv 
virtualenv --system-site-packages tensorflow1.8
source tensorflow1.8/bin/activate
easy_install -U pip
pip install -i https://pypi.tuna.tsinghua.edu.cn/simple --upgrade tensorflow-gpu

强烈建议将清华的pip源写到配置文件里,这样就更方便快捷了。

最后测试一下TensorFlow1.8:

Python 2.7.12 (default, Dec  4 2017, 14:50:18) 
[GCC 5.4.0 20160609] on linux2
Type "help", "copyright", "credits" or "license" for more information.
>>> import tensorflow as tf
>>> sess = tf.Session(config=tf.ConfigProto(log_device_placement=True))
2018-06-17 12:15:34.158680: I tensorflow/core/platform/cpu_feature_guard.cc:140] Your CPU supports instructions that this TensorFlow binary was not compiled to use: AVX2 FMA
2018-06-17 12:15:34.381812: I tensorflow/core/common_runtime/gpu/gpu_device.cc:1356] Found device 0 with properties: 
name: GeForce GTX 1080 Ti major: 6 minor: 1 memoryClockRate(GHz): 1.582
pciBusID: 0000:05:00.0
totalMemory: 10.91GiB freeMemory: 5.53GiB
2018-06-17 12:15:34.551451: I tensorflow/core/common_runtime/gpu/gpu_device.cc:1356] Found device 1 with properties: 
name: GeForce GTX 1080 Ti major: 6 minor: 1 memoryClockRate(GHz): 1.582
pciBusID: 0000:06:00.0
totalMemory: 10.92GiB freeMemory: 5.80GiB
2018-06-17 12:15:34.780350: I tensorflow/core/common_runtime/gpu/gpu_device.cc:1356] Found device 2 with properties: 
name: GeForce GTX 1080 Ti major: 6 minor: 1 memoryClockRate(GHz): 1.582
pciBusID: 0000:09:00.0
totalMemory: 10.92GiB freeMemory: 5.80GiB
2018-06-17 12:15:34.959199: I tensorflow/core/common_runtime/gpu/gpu_device.cc:1356] Found device 3 with properties: 
name: GeForce GTX 1080 Ti major: 6 minor: 1 memoryClockRate(GHz): 1.582
pciBusID: 0000:0a:00.0
totalMemory: 10.92GiB freeMemory: 5.80GiB
2018-06-17 12:15:34.966403: I tensorflow/core/common_runtime/gpu/gpu_device.cc:1435] Adding visible gpu devices: 0, 1, 2, 3
2018-06-17 12:15:36.373745: I tensorflow/core/common_runtime/gpu/gpu_device.cc:923] Device interconnect StreamExecutor with strength 1 edge matrix:
2018-06-17 12:15:36.373785: I tensorflow/core/common_runtime/gpu/gpu_device.cc:929]      0 1 2 3 
2018-06-17 12:15:36.373798: I tensorflow/core/common_runtime/gpu/gpu_device.cc:942] 0:   N Y Y Y 
2018-06-17 12:15:36.373804: I tensorflow/core/common_runtime/gpu/gpu_device.cc:942] 1:   Y N Y Y 
2018-06-17 12:15:36.373808: I tensorflow/core/common_runtime/gpu/gpu_device.cc:942] 2:   Y Y N Y 
2018-06-17 12:15:36.373814: I tensorflow/core/common_runtime/gpu/gpu_device.cc:942] 3:   Y Y Y N 
2018-06-17 12:15:36.374516: I tensorflow/core/common_runtime/gpu/gpu_device.cc:1053] Created TensorFlow device (/job:localhost/replica:0/task:0/device:GPU:0 with 5307 MB memory) -> physical GPU (device: 0, name: GeForce GTX 1080 Ti, pci bus id: 0000:05:00.0, compute capability: 6.1)
2018-06-17 12:15:36.444426: I tensorflow/core/common_runtime/gpu/gpu_device.cc:1053] Created TensorFlow device (/job:localhost/replica:0/task:0/device:GPU:1 with 5582 MB memory) -> physical GPU (device: 1, name: GeForce GTX 1080 Ti, pci bus id: 0000:06:00.0, compute capability: 6.1)
2018-06-17 12:15:36.506340: I tensorflow/core/common_runtime/gpu/gpu_device.cc:1053] Created TensorFlow device (/job:localhost/replica:0/task:0/device:GPU:2 with 5582 MB memory) -> physical GPU (device: 2, name: GeForce GTX 1080 Ti, pci bus id: 0000:09:00.0, compute capability: 6.1)
2018-06-17 12:15:36.614736: I tensorflow/core/common_runtime/gpu/gpu_device.cc:1053] Created TensorFlow device (/job:localhost/replica:0/task:0/device:GPU:3 with 5582 MB memory) -> physical GPU (device: 3, name: GeForce GTX 1080 Ti, pci bus id: 0000:0a:00.0, compute capability: 6.1)
Device mapping:
/job:localhost/replica:0/task:0/device:GPU:0 -> device: 0, name: GeForce GTX 1080 Ti, pci bus id: 0000:05:00.0, compute capability: 6.1
/job:localhost/replica:0/task:0/device:GPU:1 -> device: 1, name: GeForce GTX 1080 Ti, pci bus id: 0000:06:00.0, compute capability: 6.1
/job:localhost/replica:0/task:0/device:GPU:2 -> device: 2, name: GeForce GTX 1080 Ti, pci bus id: 0000:09:00.0, compute capability: 6.1
/job:localhost/replica:0/task:0/device:GPU:3 -> device: 3, name: GeForce GTX 1080 Ti, pci bus id: 0000:0a:00.0, compute capability: 6.1
2018-06-17 12:15:36.689345: I tensorflow/core/common_runtime/direct_session.cc:284] Device mapping:
/job:localhost/replica:0/task:0/device:GPU:0 -> device: 0, name: GeForce GTX 1080 Ti, pci bus id: 0000:05:00.0, compute capability: 6.1
/job:localhost/replica:0/task:0/device:GPU:1 -> device: 1, name: GeForce GTX 1080 Ti, pci bus id: 0000:06:00.0, compute capability: 6.1
/job:localhost/replica:0/task:0/device:GPU:2 -> device: 2, name: GeForce GTX 1080 Ti, pci bus id: 0000:09:00.0, compute capability: 6.1
/job:localhost/replica:0/task:0/device:GPU:3 -> device: 3, name: GeForce GTX 1080 Ti, pci bus id: 0000:0a:00.0, compute capability: 6.1

安装Keras2.1.x

Keras的后端支持TensorFlow, Theano, CNTK,在安装完TensorFlow GPU版本之后,继续安装Keras非常简单,在TensorFlow的虚拟环境中,直接"pip install keras"即可,安装的版本是Keras2.1.6:

Installing collected packages: h5py, scipy, pyyaml, keras
Successfully installed h5py-2.7.1 keras-2.1.6 pyyaml-3.12 scipy-1.1.0

测试一下:

Python 2.7.12 (default, Dec  4 2017, 14:50:18) 
[GCC 5.4.0 20160609] on linux2
Type "help", "copyright", "credits" or "license" for more information.
>>> import keras
Using TensorFlow backend.

注:原创文章,转载请注明出处及保留链接“我爱自然语言处理”:http://www.52nlp.cn

本文链接地址:从零开始搭建深度学习服务器: 1080TI四卡并行(Ubuntu16.04+CUDA9.2+cuDNN7.1+TensorFlow+Keras) http://www.52nlp.cn/?p=10334

AI Challenger 2017 奇遇记

Deep Learning Specialization on Coursera

本文记录一下去年下半年参加的AI Challenger比赛的过程,有那么一点意思,之所以说是奇遇,看完文章就明白了。

去年8月,由创新工场、搜狗、今日头条联合举办的“AI challenger全球AI挑战赛”首届比赛正式开赛。比赛共设6个赛道,包括英中机器同声传译、英中机器文本翻译、场景分类、图像中文描述、人体骨骼关键点预测以及虚拟股票趋势预测,一时汇集了众多关注的目光:

“AI Challenger 全球AI挑战赛”是面向全球人工智能(AI)人才的开放数据集和编程竞赛平台,致力于打造大型、全面的科研数据集与世界级竞赛平台,从科研角度出发,满足学术界对高质量数据集的需求,推进人工智能在科研与商业领域的结合,促进世界范围内人工智能研发人员共同探索前沿领域的技术突破及应用创新。在2017年的首届大赛中,AI Challenger发布了千万量级的机器翻译数据集、百万量级的计算机视觉数据集,一系列兼具学术前沿性和产业应用价值的竞赛以及超过200万人民币的奖金,吸引了来自全球65个国家的8892支团队参赛,成为目前国内规模最大的科研数据集平台、以及最大的非商业化竞赛平台。 AI Challenger以服务、培养AI高端人才为使命,打造良性可持续的AI科研新生态。

不过AI Challenger 最吸引我的不是每项比赛数十万元的奖金(这个掂量一下也拿不到),而是英中机器翻译提供的高达1千万的中英双语句对语料,这个量级,在开放的中英语料里仅次于联合国平行语料库,相当的有诱惑力:

简介
英中机器文本翻译作为此次比赛的任务之一,目标是评测各个团队机器翻译的能力。本次机器翻译语言方向为英文到中文。测试文本为口语领域数据。参赛队伍需要根据评测方提供的数据训练机器翻译系统,可以自由的选择机器翻译技术。例如,基于规则的翻译技术、统计机器翻译及神经网络机器翻译等。参赛队伍可以使用系统融合技术,但是系统融合系统不参与排名。需要指出,神经网络机器翻译常见的Ensemble方法,本次评测不认定为系统融合技术。

数据说明
我们将所有数据分割成为训练集、验证集和测试集合。我们提供了超过1000万的英中对照的句子对作为数据集合。其中,训练集合占据绝大部分,验证集合8000对,测试集A 8000条,测试集B 8000条。训练数据主要来源于英语学习网站和电影字幕,领域为口语领域。所有双语句对经过人工检查,数据集从规模、相关度、质量上都有保障。一个英中对照的句子对,包含一句英文和一句中文文本,中文句子由英文句子人工翻译而成。中英文句子分别保存到两个文件中,两个文件中的中英文句子以行号形成一一对应的关系。验证集和测试集最终是以标准的XML格式发布给参赛方。

训练条件
本次评测只允许参赛方使用使用评测方指定的数据训练机器翻译系统,并对其排名。参赛方需遵守以下关于训练方式的说明。参赛方可以使用基本的自然语言处理工具,例如中文分词和命名实体识别。

大概十年前我读研期间做得是统计机器翻译,那个时候能接触到的中英句对最多到过2、3百万,用得最多的工具是知名的开源统计机器翻译工具Moses,也在这里写了不少相关的文章。后来工作先后从事过机器翻译、广告文本挖掘相关的工作,与机器翻译渐行渐远。这一两年,我花了很多时间在专利数据挖掘上,深知专利数据翻译的重要性,也了解到机器翻译对于专利翻译有天然的吸引力。加之这几年来深度学习如火如荼,神经网络机器翻译横空出世,Google, 微软,Facebook等公司关于机器翻译的PR一浪高过一浪,大有“取代”人翻译的感觉,这些都都给了我很大的触动,但是一直没有机会走进神经网络机器翻译。刚好这个时候自己又在家里重新组了一台1080TI深度学习主机,加上AI Challenger提供的机器翻译数据机会,我把这次参赛的目标定为:

  • 了解目前神经网络机器翻译NMT的发展趋势
  • 学习并调研相关的NMT开源工具
  • 将NMT应用在中英日三语之间的专利翻译产品上

相对于统计机器翻译,神经网络机器翻译的开源工具更加丰富,这也和最近几年深度学习开源平台遍地开花有关,每个深度学习平台基本上都附有一两个典型的神经网络机器翻译工具和例子。不过需要说明的是,以下这些关于NMT工具的记录大多数是去年9月到12月期间的调研,很多神经网络机器翻译工具还在不断的迭代和演讲中,下面的一些描述可能都有了变化。

虽然之前也或多或少的碰到过一些NMT工具,但是这一次我的神经网络机器翻译开源工具之旅是从OpenNMT开启的,这个开源NMT工具由哈佛NLP组推出,诞生于2016年年末,不过主版本基于Torch, 默认语言是Lua,对于喜爱Python的我来说还不算太方便。所以首先尝试了OpenNMT的Pytorch版本: OpenNMT-py,用AI Challenger官方平台提供中英翻译句对中的500万句对迅速跑了一个OpenNMT-py的默认模型:

Step 2: Train the model
python train.py -data data/demo -save_model demo-model
The main train command is quite simple. Minimally it takes a data file and a save file. This will run the default model, which consists of a 2-layer LSTM with 500 hidden units on both the encoder/decoder.

然后走了一遍AI Challenger的比赛流程,第一次提交记录如下:

2017.09.26 第一次提交:训练数据500万, opennmt-py, default,线下验证集结果:0.2325,线上提交测试集结果:0.22670

走完了比赛流程,接下来我要认真的审视这次英中机器翻译比赛了,在第二轮训练模型开始前,我首先对数据做了标准化的预处理:

  1. 数据shuf之后选择了8000句对作为开发集,8000句对作为测试集,剩下的980多万句对作为训练集;
  2. 英文数据按照统计机器翻译工具Moses 的预处理流程进行了tokenize和truecase;中文数据直接用Jieba中文分词工具进行分词;

这一次我将目光瞄准了Google的NMT系统:GNMT, Google的Research Blog是一个好地方: Building Your Own Neural Machine Translation System in TensorFlow,我从这篇文章入手,然后学习使用Tensorflow的NMT开源工具: Tensorflow-NMT,第一次使用subword bpe处理数据,训练了一个4层的gnmt英中模型,记录如下:

2017.10.05 第二次提交:训练集988万句对, tf-nmt, gnmt-4-layer,bpe16000, 线下验证集结果0.2739,线上提交测试集结果:0.26830

这次的结果不错,BLEU值较第一次提交有4个点的提升,我继续尝试使用bpe处理,一周后,做了第三次提交:

2017.10.12 第三次提交:训练集988万句对,tf-nmt, gnmt-4-layer,bpe32000, 线下验证集结果0.2759,线上提交测试集结果:0.27180

依然有一些提高,不过幅度不大。这一次,为了调研各种NMT开源工具,我又把目光锁定到OpenNMT,事实上,到目前为止,接触到的几个神经网络机器翻译开源工具中,和统计机器翻译开源工具Moses最像的就是OpenNMT,有自己独立的官网,文档相当详细,论坛活跃度很高,并且有不同的分支版本,包括主版本 OpenNMT-lua, Pytorch版本 OpenNMT-py, TensorFlow版本 OpenNMT-tf 。所以为了这次实验我在深度学习主机中安装了Torch和OpenNMT-lua版本,接下来半个月做了两次OpenNMT训练英中神经网络翻译模型的尝试,不过在验证集的结果和上面的差不多或者略低,没有实质性提高,所以我放弃了这两次提交。

也在这个阶段,从不同途径了解到Google新推的Transformer模型很牛,依然从Google Research Blog入手:Transformer: A Novel Neural Network Architecture for Language Understanding ,学习这篇神文:《Attention Is All You Need》 和尝试相关的Transformer开源工具 TensorFlow-Tensor2Tensor。一图胜千言,谷歌AI博客上给得这个图片让人无比期待,不过实际操作中还是踩了很多坑:

还是和之前学习使用开源工具的方法类似,我第一次的目标主要是走通tensor2tensor,所以跑了一个 wmt32k base_single 的英中transformer模型,不过结果一般,记录如下:

2017.11.03 第六次实验:t2t transformer wmt32k base_single, 线下验证集BLEU: 0.2605,未提交

之后我又换为wmt32k big_single的设置,再次训练英中transformer模型,这一次,终于在线下验证集的BLEU值上,达到了之前GNMT最好的结果,所以我做了第四次线上提交,不过测试集A的结果还略低一些,记录如下:

2017.11.06 第七次实验:t2t transformer wmt32k big_single,线下验证集结果 0.2759, 线上测试集得分:0.26950

不过这些结果和博客以及论文里宣称的结果相差很大,我开始去检查差异点,包括tensor2tensor的issue以及论文,其实论文里关于实验的部分交代的很清楚:

On the WMT 2014 English-to-German translation task, the big transformer model (Transformer (big) in Table 2) outperforms the best previously reported models (including ensembles) by more than 2.0 BLEU, establishing a new state-of-the-art BLEU score of 28.4. The configuration of this model is listed in the bottom line of Table 3. Training took 3.5 days on 8 P100 GPUs. Even our base model surpasses all previously published models and ensembles, at a fraction of the training cost of any of the competitive models.

On the WMT 2014 English-to-French translation task, our big model achieves a BLEU score of 41.0, outperforming all of the previously published single models, at less than 1/4 the training cost of the previous state-of-the-art model. The Transformer (big) model trained for English-to-French used dropout rate Pdrop = 0.1, instead of 0.3.

For the base models, we used a single model obtained by averaging the last 5 checkpoints, which were written at 10-minute intervals. For the big models, we averaged the last 20 checkpoints. We used beam search with a beam size of 4 and length penalty α = 0.6 . These hyperparameters were chosen after experimentation on the development set. We set the maximum output length during inference to input length + 50, but terminate early when possible.

总结起来有2个地方可以改进:第一,是对checkpoints进行average, 这个效果立竿见影:

2017.11.07 第八次实验:t2t transformer wmt32k big_single average model, 线下验证集得分 0.2810 , 提交测试集得分:0.27330

第二,要有高性能的深度学习服务器。谷歌实验中最好的结果是在8块 P100 GPU的机器上训练了3.5天,对我的单机1080TI深度学习主机来说,一方面训练时对参数做了取舍,另一方面用时间换空间,尝试增加训练步数,直接将训练步数增加到100万次,结果还是不错的:

2017.11.15 第九次实验:t2t transformer wmt32k big_single 1000k 10beam,线下验证集得分0.2911,线上提交测试集得分0.28560

然后继续average checkpoints:
2017.11.16 第十次提交: t2t transformer wmt32k big_single 1000k average 10beam, 线下验证集得分0.2930,线上提交测试集得分0.28780

这两个方法确实能有效提高BLEU值,所以我继续沿用这个策略,按着训练时间推算了一下,估计这台机器在12月初比赛正式结束前大概可以训练一个250万次的模型,当然,这个给自己预留了最后提交比赛结果的时间。不过在11月27日,我在英中机器翻译比赛测试集A结束提交前提交了一个训练了140万次,并做了模型average的提交,算是这个赛道Test A关闭前的最后一次提交:

2017.11.27 第十一次提交 t2t transformer wmt32k big_single 1400k.beam10.a0.9.average, 验证集 0.2938 测试集 0.28950

12月1日凌晨测试集B正式放出,这个是最终排名的重要依据,只有2次提交机会,并且结果不会实时更新,只有等到12月3号之后才会放出最终排名。我的英中2500k Transformer模型大概在12月2号训练完毕,我做了Test B的第一次提交:

2017.12.2 average b10 a0.9: 0.2972(验证集)

之后,我逐一检查了保留的20个checkpoint在验证集上的得分,最终选择了高于平均值的11个checkpoint的average又做了第二次提交,虽然验证集只高了0.0001, 但是在这样的比赛中,“蚊子肉也是肉啊”:

2017.12.3 average select 11 b10 a0.9: 0.2973(验证集)

这就是我在英中机器文本翻译比赛中的整个历程,在Test A的最终排名大概在二十几名,但是最后一次模型的结果应该还能提高,所以预期是前20,剩下的就是等待TEST B的最终排名结果了。做到这个份上,其实我还挺满意的,不过故事如果真的到此就结束了,那算不上奇遇,有意思的事情才刚开始。

AI Challenger 2017有两个赛道和机器翻译有关,一个是英中机器文本翻译比赛(最高奖金30万),另外一个是英中机器同声传译比赛(最高奖金40万),一开始报名的时候,直观上觉得后者比较复杂,一方面奖金部分说明了问题,另外赛题描述部分也让人觉得涉及到语音处理,比较复杂:

简介
随着最近深度学习在语音、自然语言处理里面的应用,语音识别的错误率在不断降低,机器翻译的效果也在不断提高。语音处理和机器翻译的进步也推动机器同声传译的进步。如果竞赛任务同时考虑语音识别、机器翻译和语音合成这些项目,参赛队伍遇到的难度会很大。所以本次评测重点也在语音识别后的文本处理和机器翻译任务。翻译语言方向为英文到中文。

语音识别后处理模块:语音识别后的文本与书面语有很多不同。识别后文本具有(1)包含有识别错误;(2)识别结果没有标点符号;(3)源端为比较长的句子,例如对40~50s的语音标注后的文本,没有断句;(4)口语化文本,夹杂语气词等特点。由于本次比赛没有提供错误和正确对照的文本用于训练纠错模块。本次比赛提供的测试集合的源端文本是人工对语音标注后的文本,不包含识别错误。针对其它的特点,参赛队伍可以这几个方面考虑优化,但不限于以下几个方面:

1. 针对无标点的情况,参赛方可以利用提供的英文单语数据训练自动标点模块。用自动标点模块对测试集合文本进行添加标点。自动标点也属于序列标注任务,选手可以使用统计模型或是神经网络的模型进行建模。

2. 针对断句:源端文本都是比较长的文本,不利于机器翻译,参赛者可以设定断句策略。例如,参赛者可以依据标点来进行断句,将每个小的分句送入机器翻译系统。

3. 针对口语化:参赛队伍可以制定一些去除口语词的规则来处理测试集合。

机器翻译模块:将识别后处理的文本翻译成目标语言。参赛队伍需要根据评测方提供的数据训练机器翻译系统,可以自由的选择机器翻译技术。例如,基于规则的翻译技术、基于实例的翻译技术、统计机器翻译及神经网络机器翻译等。参赛队伍可以使用系统融合技术,但是系统融合系统不参与排名。

数据说明
机器翻译训练集。我们提供了1000万左右英中对照的句子对作为训练集合。训练数据领域为口语领域。所有双语句对经过人工检查,数据集从规模、相关度、质量上都有保障。一个英中对照的句子对,包含一句英文和一句中文文本,中文句子由英文句子人工翻译而成。

自动标点训练数据。选手可以利用提供的1000万文本训练自动标点系统。

验证集和测试集。我们会分别选取多个英语演讲的题材的音频,总时长在3~6小时之间,然后按照内容切分成30s~50s不等长度的音频数据,人工标注出音频对应的英文文本。人工标注的文本不翻译识别错误、无标点、含有语气词等。人工标注的好的英文文本会由专业译员翻译成中文文本,就形成了英中对照的句子对。抽取的英中对照的句子对会被分割为验证集和测试集。验证集和测试集最终是以标准的XML格式提供给选手。

我在一开始的时候考虑到这个比赛同样提供上千万句对的语料,所以当时顺手报名了这个同声传译比赛,但是直到最后一刻,我还没有仔细看过或者准备过这个任务。不过12月2号当我第一次完成英中机器翻译比赛的测试集B提交后,以完成作业的心态了解了一下这个英中机器同传比赛的题意以及数据集,发现这里提供的训练集和英中机器翻译比赛的数据是一致的,也就是说机器翻译模块可以复用之前训练的英中Transformer模型,而真正需要解决的,是标点符号自动标注模块以及断句模块。

感谢Google、Github和开源世界,在测试了几个自动标点标注模块后,我把目光锁定在 punctuator2(A bidirectional recurrent neural network model with attention mechanism for restoring missing punctuation in unsegmented text), 一个带attention机制的双向RNN无标点文本标点符号还原工具,通过它很快的构建了英文文本自动标点标注模块,并且用在了英中机器同声传译比赛的验证集和测试集上,验证集结果不算太差,所以对应英中机器翻译的模型,我也做了两次测试集B的提交,但是至于结果如何,我根本无法判断,因为在测试集A上,我没有提交过一次,所以无法判断测试集和验证集的正相关性。但是完成了 AI Challenger 的相关“作业“,我基本上心满意足了,至于结果如何,Who Care?

大约一个周之后测试集B上的结果揭晓,我在英中机器翻译文本比赛上进了前20,英中同声传译比赛上进了前10,不过前者的参数队伍有150多支,后者不足30支,特别是测试集B的提交队伍不到15支,有点诡异。原本以为这就结束了,不过到了12月中旬的某个周末,我微信突然收到了AI Challenger小助手的催收信息,大意是需要提交什么代码验证,问我为什么一直没有提交?我一脸错愕,她让我赶紧查看邮件,原来早在一个周之前的12月9号,AI Challenger发了一封邮件,主题是这样的:“AI Challenger 2017 TOP10 选手通知”

亲爱的AI Challenger,

恭喜你,过五关斩六将进入了TOP10,进入前十的机率是0.56%,每一位都是千里挑一的人才。非常不容易也非常优秀!

为了保证竞赛公平公正性,您还需要在12月10日中午12点前按如下格式提交您的代码至大赛核验邮箱aichallenger@chuangxin.com

邮件格式:
主题:AI ChallengerTOP10代码提交-队伍名称-赛道
正文:
队伍名称
全体队员信息:姓名-AI Challenger昵称-电话-邮箱-所在机构-专业&年级

附件:(文件名称)
1- 代码

非常感谢您的合作。

原来测试集B上的前10名同学需要提交代码复核,我原来以为只有前5名需要去北京现场答辩的同学要做这个,没想到前10名都需要做,赶紧和AI Challenger小助手沟通了一下,因为自己几乎都是通过开源工具完成的比赛,就简单的提交了一份说明文档过去了。正是在参加AI Challenger比赛的同一时期,我们的专利机器翻译产品也马不停蹄的开展了,出于对两个赛道前几名队伍BLEU值的仰望,我准备去北京旁听一下现场答辩,所以当天还和AI Challenger小助手沟通了一下现场观摩的问题,小助手说,前十名可以直接来,所以我觉得进入前十名还是不错的。

没想到第二天一早又收到Challenger小助手的微信留言,大意是:你不用自己买票来观摩比赛了,因为前面有几支队伍因种种原因放弃现场答辩,你自动递补为第5名,需要来北京参加12月21日的现场决赛答辩和颁奖礼,我们给你买机票和定酒店。吃不吃惊?意不意外?我当时的第一反应这真是2017年本人遇到最奇特的一件事情。。。然后很快收到了一封决赛邀请函:

亲爱的AI Challenger,

恭喜你,过五关斩六将走到了决赛,进入决赛的机率是0.28%,每一位都是千里挑一的人才。非常不容易也非常优秀!

“AI Challenger 全球AI挑战赛”面向人工智能领域科研人才,致力于打造大型、全面的科研数据集与世界级竞赛平台。由创新工场、搜狗、今日头条联合创建,旨在从科研角度出发,满足学术界对高质量数据集的需求,推进人工智能在科研与商业领域的结合,促进世界范围内人工智能研发人员共同探索前沿领域的技术突破及应用创新。

2017年是AI Challenger的诞生年,我们公布了百万量级的计算机视觉数据集、千万量级的机器翻译数据集,并主办多条细分赛道的AI竞赛。本次英中机器同传竞赛主要任务为集中优化语音识别后处理和机器翻译模块,旨在解决机器同声传译中的技术问题。

......

恭喜所有的入围选手!所有的入围者将在12月21日到中国北京进行现场答辩,本次大赛将以最终榜单排名结合答辩表现,加权计算总成绩,决出最终的大奖。

在答辩之前,我们需要Top5团队于12月18日下午17点前提交包括:
1-答辩PPT、
2-队员情况(个人姓名、个人高清半身照片、个人学校-年级-专业/公司-部门-职务、是否有指导老师-如有,请附上老师150字内简介)
3-团队出席名单(涉及报销事宜)
4-代码(供审查,如有作弊情况将按大赛规则处理)
5-150字内个人简介-选手手册素材(建议为三段话,第一段话是背景介绍,包括你的学校、实验室、师从老师等信息;第二段话可以介绍你的技术优势,包括Paper、竞赛履历、实习履历、项目经历;第三段话支持自由发挥,个人主页、你的爱好,让我们发现一个独一无二的你)
......

虽然去北京参加现场决赛也只是陪太子读书,不过最终还是决定去参加现场答辩,当然这里还有一关需要验证,前10名只需要提交代码或者代码描述即可,前5名参加决赛的同学还要复现整个流程,我很快被小助手拉入一个小群,里面有来自搜狗的工程师同学,他们给我提供了一台深度学习机器,让我复现整个过程以及最终核验比赛结果。当然,留给我的时间比较紧张,12月21号要去北京参加现场答辩,当时已经是12月18号了,所以Challenger小助手特地给我将时间留到了最后一刻。准备PPT和复现整个流程同时进行(复现并不是等于重新训练一遍,譬如机器翻译模型可以直接上传之前训练好的),终于赶在最后时刻完工。不过我自己答辩现场的感觉匆匆忙忙,效果也一般,但是学习了一圈其他获奖队伍的思路,很有收获:Transformer是主流获奖模型,但是很多功夫在细节,包括数据预处理阶段的筛选,数据 & 模型后处理的比拼,当然,牛逼的深度学习机器也是不可或缺的。

附上当时现场答辩PPT上写得几点思考,抛砖引玉,欢迎大家一起探讨机器翻译特别是神经网络机器翻译的现状和未来:

  • NMT开源工具的生态问题,这个过程中我们尝试了OpenNMT, OpenNMT-py, OpenNMT-tf, Tensorflow-nmt, Tensor2Tensor等工具, 总体感觉OpenNMT的生态最完备,很像SMT时代的Moses
  • NMT的工程化和产品化问题,从学术产品到工程产品,还有很多细节要打磨
  • 面向垂直领域的机器翻译:专利机器翻译是一个多领域的机器翻译问题
  • 由衷感谢这些从idea到开源工具都无私奉献的研究者和从业者们,我们只是站在了你们的肩膀上

当然,参加完AI Challenger比赛之后我们并没有停止对于神经网络机器翻译应用的探索,也有了一些新的体会。这半年来我们一直在打磨AIpatent机器翻译引擎,目标是面向中英专利翻译、中日专利翻译、日英专利翻译提供专业的专利翻译引擎,欢迎有这方面需求的同学试用我们的引擎,目前还在不断迭代中。

注:原创文章,转载请注明出处及保留链接“我爱自然语言处理”:http://www.52nlp.cn

本文链接地址:AI Challenger 2017 奇遇记 http://www.52nlp.cn/?p=10218

推荐系统中的矩阵分解技术(达观数据 周颢钰)

Deep Learning Specialization on Coursera

技术干货丨想写出人见人爱的推荐系统,先了解经典矩阵分解技术

网络中的信息量呈现指数式增长,随之带来了信息过载问题。推荐系统是大数据时代下应运而生的产物,目前已广泛应用于电商、社交、短视频等领域。本文将针对推荐系统中基于隐语义模型的矩阵分解技术来进行讨论。

NO.1
评分矩阵、奇异值分解与Funk-SVD

对于一个推荐系统,其用户数据可以整理成一个user-item矩阵。矩阵中每一行代表一个用户,而每一列则代表一个物品。若用户对物品有过评分,则矩阵中处在用户对应的行与物品对应的列交叉的位置表示用户对物品的评分值。这个user-item矩阵被称为评分矩阵。

技术干货丨想写出人见人爱的推荐系统,先了解经典矩阵分解技术

上图即为评分矩阵的一个例子。其中的?表示用户还没有对物品做出评价,而推荐系统最终的目标就是对于任意一个用户,预测出所有未评分物品的分值,并按分值从高到低的顺序将对应的物品推荐给用户。

说到矩阵分解技术,首先想到的往往是特征值分解(eigendecomposition)奇异值分解(Singular value decomposition,SVD)

对于特征值分解,由于其只能作用于方阵,因此并不适合分解评分矩阵这个场景。

而对于奇异值分解,其具体描述为:假设矩阵M是一个m*n的矩阵,则一定存在一个分解技术干货丨想写出人见人爱的推荐系统,先了解经典矩阵分解技术,其中U是m*m的正交矩阵,V是n*n的正交矩阵,Σ是m*n的对角阵,可以说是完美契合分解评分矩阵这个需求。其中,对角阵Σ还有一个特殊的性质,它的所有元素都非负,且依次减小。这个减小也特别快,在很多情况下,前10%的和就占了全部元素之和的99%以上,这就是说我们可以使用最大的k个值和对应大小的U、V矩阵来近似描述原始的评分矩阵。

于是我们马上能得到一个解决方案:对原始评分矩阵M做奇异值分解,得到U、V及Σ,取Σ中较大的k类作为隐含特征,则此时M(m*n)被分解成U(m*k) Σ(k*k)V(k*n),接下来就可以直接使用矩阵乘法来完成对原始评分矩阵的填充。但是实际上,这种方法存在一个致命的缺陷——奇异值分解要求矩阵是稠密的。也就是说SVD不允许待分解矩阵中存在空白的部分,这一开始就与我们的问题所冲突了。

当然,也可以想办法对缺失值先进行简单的填充,例如使用全局平均值。然而,即使有了补全策略,在实际应用场景下,user和item的数目往往是成千上万的,面对这样的规模传统SVD算法O(n^3)的时间复杂度显然是吃不消的。因此,直接使用传统SVD算法并不是一个好的选择。(达观数据周颢钰)

技术干货丨想写出人见人爱的推荐系统,先了解经典矩阵分解技术

既然传统SVD在实际应用场景中面临着稀疏性问题和效率问题,那么有没有办法避开稀疏问题,同时提高运算效率呢?

实际上早在06年,Simon Funk就提出了Funk-SVD算法,其主要思路是将原始评分矩阵M(m*n)分解成两个矩阵P(m*k)和Q(k*n),同时仅考察原始评分矩阵中有评分的项分解结果是否准确,而判别标准则是均方差。

即对于矩阵M(m*n),我们想办法将其分解为P(m*k)、Q(k*n),此时对于原始矩阵中有评分的位置MUI来说,其在分解后矩阵中对应的值就是

技术干货丨想写出人见人爱的推荐系统,先了解经典矩阵分解技术

那么对于整个评分矩阵而言,总的损失就是

技术干货丨想写出人见人爱的推荐系统,先了解经典矩阵分解技术

只要我们能想办法最小化上面的损失SSE,就能以最小的扰动完成对原始评分矩阵的分解,在这之后只需要用计算M’ 的方式来完成对原始评分矩阵的填充即可。(达观数据 周颢钰)

这种方法被称之为隐语义模型(Latent factor model,LFM),其算法意义层面的解释为通过隐含特征(latent factor)将user兴趣与item特征联系起来。

技术干货丨想写出人见人爱的推荐系统,先了解经典矩阵分解技术

对于原始评分矩阵R,我们假定一共有三类隐含特征,于是将矩阵R(3*4)分解成用户特征矩阵P(3*3)与物品特征矩阵Q(3*4)。考察user1对item1的评分,可以认为user1对三类隐含特征class1、class2、class3的感兴趣程度分别为P11、P12、P13,而这三类隐含特征与item1相关程度则分别为Q11、Q21、Q31。

回到上面的式子

技术干货丨想写出人见人爱的推荐系统,先了解经典矩阵分解技术

可以发现用户U对物品I最终的评分就是由各个隐含特征维度下U对I感兴趣程度的和,这里U对I的感兴趣程度则是由U对当前隐含特征的感兴趣程度乘上I与当前隐含特征相关程度来表示的。

于是,现在的问题就变成了如何求出使得SSE最小的矩阵P和Q

 

NO.2
随机梯度下降法

在求解上文中提到的这类无约束最优化问题时,梯度下降法(Gradient Descent)是最常采用的方法之一,其核心思想非常简单,沿梯度下降的方向逐步迭代。梯度是一个向量,表示的是一个函数在该点处沿梯度的方向变化最快,变化率最大,而梯度下降的方向就是指的负梯度方向。

根据梯度下降法的定义,其迭代最终必然会终止于一阶导数(对于多元函数来说则是一阶偏导数)为零的点,即驻点。对于可导函数来说,其极值点一定是驻点,而驻点并不一定是极值点,还可能是鞍点。另一方面,极值点也不一定是最值点。下面举几个简单的例子。

技术干货丨想写出人见人爱的推荐系统,先了解经典矩阵分解技术

上图为函数技术干货丨想写出人见人爱的推荐系统,先了解经典矩阵分解技术。从图中可以看出,函数唯一的驻点 (0,0)为其最小值点。

技术干货丨想写出人见人爱的推荐系统,先了解经典矩阵分解技术

上图为函数技术干货丨想写出人见人爱的推荐系统,先了解经典矩阵分解技术。其一阶导数为技术干货丨想写出人见人爱的推荐系统,先了解经典矩阵分解技术,从而可知其同样有唯一驻点(0,0)。从图中可以看出,函数并没有极值点。

技术干货丨想写出人见人爱的推荐系统,先了解经典矩阵分解技术

上图为函数技术干货丨想写出人见人爱的推荐系统,先了解经典矩阵分解技术。从图像中可以看出,函数一共有三个驻点,包括两个极小值点和一个极大值点,其中位于最左边的极小值点是函数的最小值点。

技术干货丨想写出人见人爱的推荐系统,先了解经典矩阵分解技术

上图为函数技术干货丨想写出人见人爱的推荐系统,先了解经典矩阵分解技术。其中点 (0,0,0)为其若干个鞍点中的一个。

从上面几幅函数图像中可以看出梯度下降法在求解最小值时具有一定的局限性,用一句话概括就是,目标函数必须是凸函数。关于凸函数的判定,对于一元函数来说,一般是求二阶导数,若其二阶导数非负,就称之为凸函数。对于多元函数来说判定方法类似,只是从判断一元函数的单个二阶导数是否非负,变成了判断所有变量的二阶偏导数构成的黑塞矩阵(Hessian Matrix)是否为半正定矩阵。判断一个矩阵是否半正定可以判断所有特征值是否非负,或者判断所有主子式是否非负。

回到上面funk-svd的最优化问题上来。经过一番紧张刺激的计算之后,可以很遗憾地发现,我们最终的目标函数是非凸的。这就意味着单纯使用梯度下降法可能会找到极大值、极小值或者鞍点。这三类点的稳定性按从小到大排列依次是极大值、鞍点、极小值,考虑实际运算中,浮点数运算都会有一定的误差,因此最终结果很大几率会落入极小值点,同时也有落入鞍点的概率。而对于极大值点,除非初始值就是极大值,否在几乎不可能到达极大值点。

为了从鞍点和极小值点中脱出,在梯度下降法的基础上衍生出了各式各样的改进算法,例如动态调整步长(即学习率),利用上一次结果的动量法,以及随机梯度下降法(Stochastic Gradient Descent, SGD)等等。实际上,这些优化算法在当前最火热的深度学习中也占据着一席之地,例如adagrad、RMSprop,Adam等等。而本文则将主要介绍一下随机梯度下降法。(达观数据 周颢钰)

随机梯度下降法主要是用来解决求和形式的优化问题,与上面需要优化的目标函数一致。其思想也很简单,既然对于求和式中每一项求梯度很麻烦,那么干脆就随机选其中一项计算梯度当作总的梯度来使用好了。

具体应用到上文中的目标函数

技术干货丨想写出人见人爱的推荐系统,先了解经典矩阵分解技术

SSE是关于P和Q的多元函数,当随机选定U和I之后,需要枚举所有的k,并且对技术干货丨想写出人见人爱的推荐系统,先了解经典矩阵分解技术,以及技术干货丨想写出人见人爱的推荐系统,先了解经典矩阵分解技术求偏导数。整个式子中仅有技术干货丨想写出人见人爱的推荐系统,先了解经典矩阵分解技术这一项与之相关,通过链式法则可知

技术干货丨想写出人见人爱的推荐系统,先了解经典矩阵分解技术

在实际的运算中,为了P和Q中所有的值都能得到更新,一般是按照在线学习的方式选择评分矩阵中有分数的点对应的U、I来进行迭代。

值得一提的是,上面所说的各种优化都无法保证一定能找到最优解。有论文指出,单纯判断驻点是否是局部最优解就是一个NPC问题,但是也有论文指出SGD的解能大概率接近局部最优甚至全局最优。

另外,相比于利用了黑塞矩阵的牛顿迭代法,梯度下降法在方向上的选择也不是最优的。牛顿法相当于考虑了梯度的梯度,所以相对更快。而由于其线性逼近的特性,梯度下降法在极值点附近可能出现震荡,相比之下牛顿法就没有这个问题。

但是在实际应用中,计算黑塞矩阵的代价是非常大的,在这里梯度下降法的优势就凸显出来了。因此,牛顿法往往应用于一些较为简单的模型,如逻辑回归。而对于稍微复杂一些的模型,梯度下降法及其各种进化版本则更受青睐。(达观数据 周颢钰)

 

NO.3
基于Funk-SVD的改进算法

到这一步为止,我们已经能通过SGD找到一组分解方案了,然而对于填充矩阵的FunkSVD算法本身而言,目前这个形式是否过于简单了一些呢?

实际上,在Funk-SVD被提出之后,出现了一大批改进算法。本文将介绍其中某些经典的改进思路。

1

正则化

对于所有机器学习算法而言,过拟合一直是需要重视的一个问题,而加入正则化项则是防止过拟合的经典处理方法。对于上面的Funk-SVD算法而言,具体做法就是在损失函数后面加入一个L2正则项,即

技术干货丨想写出人见人爱的推荐系统,先了解经典矩阵分解技术

其中,λ为正则化系数,而整个求解过程依然可以使用随机梯度下降来完成。

2

偏置

考察式子

技术干货丨想写出人见人爱的推荐系统,先了解经典矩阵分解技术

可以发现这个式子表明用户U对物品 I 的评分全部是由U和I之间的联系带来的。然而实际上,有很多性质是用户或者物品所独有的。比如某个用户非常严苛,不论对什么物品给出的分数都很低,这仅仅与用户自身有关。

又比如某个物品非常精美,所有用户都会给出较高的分数,这也仅仅与物品自身有关。因此,只通过用户与物品之间的联系来预测评分是不合理的,同时也需要考虑到用户和物品自身的属性。于是,评分预测的公式也需要进行修正。不妨设整个评分矩阵的平均分为σ,用户U和物品I的偏置分别为技术干货丨想写出人见人爱的推荐系统,先了解经典矩阵分解技术技术干货丨想写出人见人爱的推荐系统,先了解经典矩阵分解技术,那么此时的评分计算方法就变成了

技术干货丨想写出人见人爱的推荐系统,先了解经典矩阵分解技术

同时,误差E除了由于M‘计算方式带来的变化之外,也同样需要加入U和I偏置的正则项,因此最终的误差函数变成了

技术干货丨想写出人见人爱的推荐系统,先了解经典矩阵分解技术

3

隐式反馈

对于实际的应用场景中,经常有这样一种情况:用户点击查看了某一个物品,但是最终没有给出评分。

实际上,对于用户点击查看物品这个行为,排除误操作的情况,在其余的情况下可以认为用户被物品的描述,例如贴图或者文字描述等所吸引。这些信息我们称之为隐式反馈。事实上,一个推荐系统中有明确评分的数据是很少的,这类隐式数据才占了大头。

可以发现,在我们上面的算法当中,并没有运用到这部分数据。于是对于评分的方法,我们可以在显式兴趣+偏置的基础上再添加隐式兴趣,即

技术干货丨想写出人见人爱的推荐系统,先了解经典矩阵分解技术

其中N(U)表示为用户U提供了隐式反馈的物品的集合。这就是svd++算法。

此时的损失函数也同样需要加上隐式兴趣的正则项,即

技术干货丨想写出人见人爱的推荐系统,先了解经典矩阵分解技术

4

对偶算法

在上面的svd++中,我们是基于用户角度来考虑问题的,很明显我们同样可以基于物品的角度来考虑问题。具体来说就是

技术干货丨想写出人见人爱的推荐系统,先了解经典矩阵分解技术

其中 N(I)表示为物品I提供了隐式反馈的用户的集合。类似地,在损失函数中也需要加上隐式兴趣的正则项。

在实际运用中,可以将原始的svd++得到的结果与对偶算法得到的结果进行融合,使得预测更加准确。然而相比起物品的数目,用户的数目往往是要高出几个量级的,因此对偶算法在储存空间和运算时间的开销上都将远高于原始的svd++,如何在效率和准确度之间找到平衡也是一个需要思考的问题。(达观数据 周颢钰)

 

NO.4
请因子分解机

矩阵分解的思想除了直接应用在分解评分矩阵上之外,其思想也能用在其他地方,接下来介绍的因子分解机(Factorization Machine,FM)就是一个例子。

对于经典的逻辑回归算法,其sigmoid函数中的项实际上是一个线性回归

技术干货丨想写出人见人爱的推荐系统,先了解经典矩阵分解技术

在这里我们认为各个特征之间是相互独立的,而事实上往往有些特征之间是相互关联、相互影响的。因此,就有必要想办法捕捉这些特征之间的相互影响。简单起见,先只捕捉二阶的关系,即特征之间两两之间的相互影响。具体反映到回归公式上,即为

技术干货丨想写出人见人爱的推荐系统,先了解经典矩阵分解技术

具体来说就是使用 技术干货丨想写出人见人爱的推荐系统,先了解经典矩阵分解技术来描述技术干货丨想写出人见人爱的推荐系统,先了解经典矩阵分解技术,对于w而言,其中可学习的项就对应了评分矩阵中有分值的项,而其他由于数据稀疏导致难以学习的项就相当于评分矩阵中的未评分项。这样一来,不仅解决了数据稀疏性带来的二阶权重学习问题,同时对于参数规模,也从技术干货丨想写出人见人爱的推荐系统,先了解经典矩阵分解技术级别降到了O(kn)级别。

 

NO.5
与DNN的结合

深度学习无疑是近几年来最热门的机器学习技术。注意到隐语义模型中,隐含特征与深度学习中的embedding实际上是一回事,那么是否有可能借助DNN来帮助我们完成矩阵分解的工作呢?

实际上,在YouTube的文章《Deep neural networks for YouTube recommendations》中,就已经有了相关技术的应用。

技术干货丨想写出人见人爱的推荐系统,先了解经典矩阵分解技术

上图是YouTube初排模型的图示。具体的流程为:首先通过nlp技术,如word2vec,预训练出所有物品的向量I表示;然后对于每一条用户对物品的点击,将用户的历史点击、历史搜索、地理位置信息等信息经过各自的embedding操作,拼接起来作为输入,经过MLP训练后得到用户的向量表示U;而最终则是通过 softmax 函数来校验U*I的结果是否准确。

相比于传统的矩阵分解算法,使用DNN能为模型带来非线性的部分,提高拟合能力。另一方面,还可以很方便地加入各式各样的特征,提高模型的准确度。(达观数据 周颢钰)

 

NO.6
矩阵分解的优缺点

矩阵分解有如下优点:

  1. 能将高维的矩阵映射成两个低维矩阵的乘积,很好地解决了数据稀疏的问题;

  2. 具体实现和求解都很简洁,预测的精度也比较好;

  3. 模型的可扩展性也非常优秀,其基本思想也能广泛运用于各种场景中。

相对的,矩阵分解的缺点则有:

  1. 可解释性很差,其隐空间中的维度无法与现实中的概念对应起来;

  2. 训练速度慢,不过可以通过离线训练来弥补这个缺点;

  3. 实际推荐场景中往往只关心topn结果的准确性,此时考察全局的均方差显然是不准确的。

NO.7
总结

矩阵分解作为推荐系统中的经典模型,已经经过了十几年的发展,时至今日依然被广泛应用于推荐系统当中,其基本思想更是在各式各样的模型中发挥出重要作用。但是对于推荐系统来说,仅仅有一个好的模型是远远不够的。影响推荐系统效果的因素非常之多。想要打造一个一流的推荐系统,除了一个强大的算法模型之外,更需要想方设法结合起具体业务,不断进行各种尝试、升级,方能取得最终的胜利。

 

参考文献

【1】Simon Funk, http://sifter.org/~simon/journal/20061211.html

【2】Koren, Yehuda, Robert Bell, and Chris Volinsky. "Matrix factorization techniques for recommender systems." Computer42.8 (2009).

【3】Jahrer, Michael, and Andreas Töscher. "Collaborative filtering ensemble." Proceedings of the 2011 International Conference on KDD Cup 2011-Volume 18. JMLR. org, 2011.

【4】Rendle, Steffen. "Factorization machines." Data Mining (ICDM), 2010 IEEE 10th International Conference on. IEEE, 2010.

【5】Covington, Paul, Jay Adams, and Emre Sargin. "Deep neural networks for youtube recommendations." Proceedings of the 10th ACM Conference on Recommender Systems. ACM, 2016.

Andrew Ng 深度学习公开课系列第五门课程序列模型开课

Deep Learning Specialization on Coursera

Andrew Ng 深度学习课程系列第五门课程序列模型(Sequence Models)在1月的尾巴终于开课 ,在跳票了几次之后,这门和NLP比较相关的深度学习课程终于开课了。这门课程属于Coursera上的深度学习专项系列 ,这个系列有5门课,目前终于完备,感兴趣的同学可以关注:Deep Learning Specialization

This course will teach you how to build models for natural language, audio, and other sequence data. Thanks to deep learning, sequence algorithms are working far better than just two years ago, and this is enabling numerous exciting applications in speech recognition, music synthesis, chatbots, machine translation, natural language understanding, and many others. You will: - Understand how to build and train Recurrent Neural Networks (RNNs), and commonly-used variants such as GRUs and LSTMs. - Be able to apply sequence models to natural language problems, including text synthesis. - Be able to apply sequence models to audio applications, including speech recognition and music synthesis. This is the fifth and final course of the Deep Learning Specialization.

这门课程主要面向自然语言,语音和其他序列数据进行深度学习建模,将会学习递归神经网络,GRU,LSTM等内容,以及如何将其应用到语音识别,机器翻译,自然语言理解等任务中去。个人认为这是目前互联网上最适合入门深度学习的系列系列课程了,Andrew Ng 老师善于讲课,另外用Python代码抽丝剥茧扣作业,课程学起来非常舒服,希望最后这门RNN课程也不负众望。参考我之前写得两篇小结:

Andrew Ng 深度学习课程小记

Andrew Ng (吴恩达) 深度学习课程小结

额外推荐: 深度学习课程资源整理

Coursera上机器学习课程(公开课)汇总推荐

Deep Learning Specialization on Coursera

Coursera上有很多机器学习课程,这里做个总结,因为机器学习相关的概念和应用很多,这里推荐的课程仅限于和机器学习直接相关的课程,虽然深度学习属于机器学习范畴,这里暂时也将其排除在外,后续会专门推出深度学习课程的系列推荐。

1. Andrew Ng 老师的 机器学习课程(Machine Learning)

机器学习入门首选课程,没有之一。这门课程从一开始诞生就备受瞩目,据说全世界有数百万人通过这门课程入门机器学习。课程的级别是入门级别的,对学习者的背景要求不高,Andrew Ng 老师讲解的又很通俗易懂,所以强烈推荐从这门课程开始走入机器学习。课程简介:

机器学习是一门研究在非特定编程条件下让计算机采取行动的学科。最近二十年,机器学习为我们带来了自动驾驶汽车、实用的语音识别、高效的网络搜索,让我们对人类基因的解读能力大大提高。当今机器学习技术已经非常普遍,您很可能在毫无察觉情况下每天使用几十次。许多研究者还认为机器学习是人工智能(AI)取得进展的最有效途径。在本课程中,您将学习最高效的机器学习技术,了解如何使用这些技术,并自己动手实践这些技术。更重要的是,您将不仅将学习理论知识,还将学习如何实践,如何快速使用强大的技术来解决新问题。最后,您将了解在硅谷企业如何在机器学习和AI领域进行创新。 本课程将广泛介绍机器学习、数据挖掘和统计模式识别。相关主题包括:(i) 监督式学习(参数和非参数算法、支持向量机、核函数和神经网络)。(ii) 无监督学习(集群、降维、推荐系统和深度学习)。(iii) 机器学习实例(偏见/方差理论;机器学习和AI领域的创新)。课程将引用很多案例和应用,您还需要学习如何在不同领域应用学习算法,例如智能机器人(感知和控制)、文本理解(网络搜索和垃圾邮件过滤)、计算机视觉、医学信息学、音频、数据库挖掘等领域。

这里有老版课程评论,非常值得参考推荐:Machine Learning

2. 台湾大学林轩田老师的 機器學習基石上 (Machine Learning Foundations)---Mathematical Foundations

如果有一定的基础或者学完了Andrew Ng老师的机器学习课程,这门机器学习基石上-数学基础可以作为进阶课程。林老师早期推出的两门机器学习课程口碑和难度均有:机器学习基石机器学习技法 ,现在重组为上和下,非常值得期待:

Machine learning is the study that allows computers to adaptively improve their performance with experience accumulated from the data observed. Our two sister courses teach the most fundamental algorithmic, theoretical and practical tools that any user of machine learning needs to know. This first course of the two would focus more on mathematical tools, and the other course would focus more on algorithmic tools. [機器學習旨在讓電腦能由資料中累積的經驗來自我進步。我們的兩項姊妹課程將介紹各領域中的機器學習使用者都應該知道的基礎演算法、理論及實務工具。本課程將較為著重數學類的工具,而另一課程將較為著重方法類的工具。]

3. 台湾大学林轩田老师的 機器學習基石下 (Machine Learning Foundations)---Algorithmic Foundations

作为2的姊妹篇,这个机器学习基石下-算法基础 更注重机器学习算法相关知识:

Machine learning is the study that allows computers to adaptively improve their performance with experience accumulated from the data observed. Our two sister courses teach the most fundamental algorithmic, theoretical and practical tools that any user of machine learning needs to know. This second course of the two would focus more on algorithmic tools, and the other course would focus more on mathematical tools. [機器學習旨在讓電腦能由資料中累積的經驗來自我進步。我們的兩項姊妹課程將介紹各領域中的機器學習使用者都應該知道的基礎演算法、理論及實務工具。本課程將較為著重方法類的工具,而另一課程將較為著重數學類的工具。

可参考早期的老版本课程评论:機器學習基石 (Machine Learning Foundations) 機器學習技法 (Machine Learning Techniques)

4. 华盛顿大学的 "机器学习专项课程(Machine Learning Specialization)"

这个系列课程包含4门子课程,分别是 机器学习基础:案例研究 , 机器学习:回归 , 机器学习:分类, 机器学习:聚类与检索:

This Specialization from leading researchers at the University of Washington introduces you to the exciting, high-demand field of Machine Learning. Through a series of practical case studies, you will gain applied experience in major areas of Machine Learning including Prediction, Classification, Clustering, and Information Retrieval. You will learn to analyze large and complex datasets, create systems that adapt and improve over time, and build intelligent applications that can make predictions from data.

4.1 Machine Learning Foundations: A Case Study Approach(机器学习基础: 案例研究)

你是否好奇数据可以告诉你什么?你是否想在关于机器学习促进商业的核心方式上有深层次的理解?你是否想能同专家们讨论关于回归,分类,深度学习以及推荐系统的一切?在这门课上,你将会通过一系列实际案例学习来获取实践经历。

Do you have data and wonder what it can tell you? Do you need a deeper understanding of the core ways in which machine learning can improve your business? Do you want to be able to converse with specialists about anything from regression and classification to deep learning and recommender systems? In this course, you will get hands-on experience with machine learning from a series of practical case-studies. At the end of the first course you will have studied how to predict house prices based on house-level features, analyze sentiment from user reviews, retrieve documents of interest, recommend products, and search for images. Through hands-on practice with these use cases, you will be able to apply machine learning methods in a wide range of domains. This first course treats the machine learning method as a black box. Using this abstraction, you will focus on understanding tasks of interest, matching these tasks to machine learning tools, and assessing the quality of the output. In subsequent courses, you will delve into the components of this black box by examining models and algorithms. Together, these pieces form the machine learning pipeline, which you will use in developing intelligent applications. Learning Outcomes: By the end of this course, you will be able to: -Identify potential applications of machine learning in practice. -Describe the core differences in analyses enabled by regression, classification, and clustering. -Select the appropriate machine learning task for a potential application. -Apply regression, classification, clustering, retrieval, recommender systems, and deep learning. -Represent your data as features to serve as input to machine learning models. -Assess the model quality in terms of relevant error metrics for each task. -Utilize a dataset to fit a model to analyze new data. -Build an end-to-end application that uses machine learning at its core. -Implement these techniques in Python.

4.2 Machine Learning: Regression(机器学习: 回归问题)

这门课程关注机器学习里面的一个基本问题: 回归(Regression), 也通过案例研究(预测房价)的方式进行回归问题的学习,最终通过Python实现相关的机器学习算法。

Case Study - Predicting Housing Prices In our first case study, predicting house prices, you will create models that predict a continuous value (price) from input features (square footage, number of bedrooms and bathrooms,...). This is just one of the many places where regression can be applied. Other applications range from predicting health outcomes in medicine, stock prices in finance, and power usage in high-performance computing, to analyzing which regulators are important for gene expression. In this course, you will explore regularized linear regression models for the task of prediction and feature selection. You will be able to handle very large sets of features and select between models of various complexity. You will also analyze the impact of aspects of your data -- such as outliers -- on your selected models and predictions. To fit these models, you will implement optimization algorithms that scale to large datasets. Learning Outcomes: By the end of this course, you will be able to: -Describe the input and output of a regression model. -Compare and contrast bias and variance when modeling data. -Estimate model parameters using optimization algorithms. -Tune parameters with cross validation. -Analyze the performance of the model. -Describe the notion of sparsity and how LASSO leads to sparse solutions. -Deploy methods to select between models. -Exploit the model to form predictions. -Build a regression model to predict prices using a housing dataset. -Implement these techniques in Python.

4.3 Machine Learning: Classification(机器学习:分类问题)

这门课程关注机器学习里面的另一个基本问题: 分类(Classification), 通过两个案例研究进行学习:情感分析和贷款违约预测,最终通过Python实现相关的算法(也可以选择其他语言,但是强烈推荐Python)。

Case Studies: Analyzing Sentiment & Loan Default Prediction In our case study on analyzing sentiment, you will create models that predict a class (positive/negative sentiment) from input features (text of the reviews, user profile information,...). In our second case study for this course, loan default prediction, you will tackle financial data, and predict when a loan is likely to be risky or safe for the bank. These tasks are an examples of classification, one of the most widely used areas of machine learning, with a broad array of applications, including ad targeting, spam detection, medical diagnosis and image classification. In this course, you will create classifiers that provide state-of-the-art performance on a variety of tasks. You will become familiar with the most successful techniques, which are most widely used in practice, including logistic regression, decision trees and boosting. In addition, you will be able to design and implement the underlying algorithms that can learn these models at scale, using stochastic gradient ascent. You will implement these technique on real-world, large-scale machine learning tasks. You will also address significant tasks you will face in real-world applications of ML, including handling missing data and measuring precision and recall to evaluate a classifier. This course is hands-on, action-packed, and full of visualizations and illustrations of how these techniques will behave on real data. We've also included optional content in every module, covering advanced topics for those who want to go even deeper! Learning Objectives: By the end of this course, you will be able to: -Describe the input and output of a classification model. -Tackle both binary and multiclass classification problems. -Implement a logistic regression model for large-scale classification. -Create a non-linear model using decision trees. -Improve the performance of any model using boosting. -Scale your methods with stochastic gradient ascent. -Describe the underlying decision boundaries. -Build a classification model to predict sentiment in a product review dataset. -Analyze financial data to predict loan defaults. -Use techniques for handling missing data. -Evaluate your models using precision-recall metrics. -Implement these techniques in Python (or in the language of your choice, though Python is highly recommended).

4.4 Machine Learning: Clustering & Retrieval(机器学习:聚类和检索)

这门课程关注的是机器学习里面的另外两个基本问题:聚类和检索,同样通过案例研究进行学习:相似文档查询,一个非常具有实际应用价值的问题:

Case Studies: Finding Similar Documents A reader is interested in a specific news article and you want to find similar articles to recommend. What is the right notion of similarity? Moreover, what if there are millions of other documents? Each time you want to a retrieve a new document, do you need to search through all other documents? How do you group similar documents together? How do you discover new, emerging topics that the documents cover? In this third case study, finding similar documents, you will examine similarity-based algorithms for retrieval. In this course, you will also examine structured representations for describing the documents in the corpus, including clustering and mixed membership models, such as latent Dirichlet allocation (LDA). You will implement expectation maximization (EM) to learn the document clusterings, and see how to scale the methods using MapReduce. Learning Outcomes: By the end of this course, you will be able to: -Create a document retrieval system using k-nearest neighbors. -Identify various similarity metrics for text data. -Reduce computations in k-nearest neighbor search by using KD-trees. -Produce approximate nearest neighbors using locality sensitive hashing. -Compare and contrast supervised and unsupervised learning tasks. -Cluster documents by topic using k-means. -Describe how to parallelize k-means using MapReduce. -Examine probabilistic clustering approaches using mixtures models. -Fit a mixture of Gaussian model using expectation maximization (EM). -Perform mixed membership modeling using latent Dirichlet allocation (LDA). -Describe the steps of a Gibbs sampler and how to use its output to draw inferences. -Compare and contrast initialization techniques for non-convex optimization objectives. -Implement these techniques in Python.

5. 密歇根大学的 Applied Machine Learning in Python(在Python中应用机器学习)

Python机器学习应用课程,这门课程主要聚焦在通过Python应用机器学习,包括机器学习和统计学的区别,机器学习工具包scikit-learn的介绍,有监督学习和无监督学习,数据泛化问题(例如交叉验证和过拟合)等。这门课程同时属于"Python数据科学应用专项课程系列(Applied Data Science with Python Specialization)"。

This course will introduce the learner to applied machine learning, focusing more on the techniques and methods than on the statistics behind these methods. The course will start with a discussion of how machine learning is different than descriptive statistics, and introduce the scikit learn toolkit. The issue of dimensionality of data will be discussed, and the task of clustering data, as well as evaluating those clusters, will be tackled. Supervised approaches for creating predictive models will be described, and learners will be able to apply the scikit learn predictive modelling methods while understanding process issues related to data generalizability (e.g. cross validation, overfitting). The course will end with a look at more advanced techniques, such as building ensembles, and practical limitations of predictive models. By the end of this course, students will be able to identify the difference between a supervised (classification) and unsupervised (clustering) technique, identify which technique they need to apply for a particular dataset and need, engineer features to meet that need, and write python code to carry out an analysis. This course should be taken after Introduction to Data Science in Python and Applied Plotting, Charting & Data Representation in Python and before Applied Text Mining in Python and Applied Social Analysis in Python.

6. 俄罗斯国立高等经济学院和Yandex联合推出的 高级机器学习专项课程系列(Advanced Machine Learning Specialization)

该系列授课语言为英语,包括深度学习,Kaggle数据科学竞赛,机器学习中的贝叶斯方法,强化学习,计算机视觉,自然语言处理等7门子课程,截止目前前3门课程已开,感兴趣的同学可以关注:

This specialization gives an introduction to deep learning, reinforcement learning, natural language understanding, computer vision and Bayesian methods. Top Kaggle machine learning practitioners and CERN scientists will share their experience of solving real-world problems and help you to fill the gaps between theory and practice. Upon completion of 7 courses you will be able to apply modern machine learning methods in enterprise and understand the caveats of real-world data and settings.

以下是和机器学习直接相关的子课程,其他这里略过:

6.3 Bayesian Methods for Machine Learning(面向机器学习的贝叶斯方法)

该课程关注机器学习中的贝叶斯方法,贝叶斯方法在很多领域都很有用,例如游戏开发和毒品发现。它们给很多机器学习算法赋予了“超能力”,例如处理缺失数据,从小数据集中提取大量有用的信息等。当贝叶斯方法被应用在深度学习中时,它可以让你将模型压缩100倍,并且自动帮你调参,节省你的时间和金钱。

Bayesian methods are used in lots of fields: from game development to drug discovery. They give superpowers to many machine learning algorithms: handling missing data, extracting much more information from small datasets. Bayesian methods also allow us to estimate uncertainty in predictions, which is a really desirable feature for fields like medicine. When Bayesian methods are applied to deep learning, it turns out that they allow you to compress your models 100 folds, and automatically tune hyperparametrs, saving your time and money. In six weeks we will discuss the basics of Bayesian methods: from how to define a probabilistic model to how to make predictions from it. We will see how one can fully automate this workflow and how to speed it up using some advanced techniques. We will also see applications of Bayesian methods to deep learning and how to generate new images with it. We will see how new drugs that cure severe diseases be found with Bayesian methods.

7. 约翰霍普金斯大学的 Practical Machine Learning(机器学习实战)

这门课程从数据科学的角度来应用机器学习进修实战,课程将会介绍机器学习的基础概念譬如训练集,测试集,过拟合和错误率等,同时这门课程也会介绍机器学习的基本模型和算法,例如回归,分类,朴素贝叶斯,以及随机森林。这门课程最终会覆盖一个完整的机器学习实战周期,包括数据采集,特征生成,机器学习算法应用以及结果评估等。这门机器学习实践课程同时属于约翰霍普金斯大学的 数据科学专项课程(Data Science Specialization)系列:

One of the most common tasks performed by data scientists and data analysts are prediction and machine learning. This course will cover the basic components of building and applying prediction functions with an emphasis on practical applications. The course will provide basic grounding in concepts such as training and tests sets, overfitting, and error rates. The course will also introduce a range of model based and algorithmic machine learning methods including regression, classification trees, Naive Bayes, and random forests. The course will cover the complete process of building prediction functions including data collection, feature creation, algorithms, and evaluation.

8. 卫斯理大学 Regression Modeling in Practice(回归模型实战)

这门课程关注的是数据分析以及机器学习领域的最重要的一个概念和工具:回归(模型)分析。这门课程使用SAS或者Python,从线性回归开始学习,到了解整个回归模型,以及应用回归模型进行数据分析:

This course focuses on one of the most important tools in your data analysis arsenal: regression analysis. Using either SAS or Python, you will begin with linear regression and then learn how to adapt when two variables do not present a clear linear relationship. You will examine multiple predictors of your outcome and be able to identify confounding variables, which can tell a more compelling story about your results. You will learn the assumptions underlying regression analysis, how to interpret regression coefficients, and how to use regression diagnostic plots and other tools to evaluate the quality of your regression model. Throughout the course, you will share with others the regression models you have developed and the stories they tell you.

这门课程同时属于卫斯理大学的 数据分析与解读专项课程系列(Data Analysis and Interpretation Specialization)

9. 卫斯理大学的 Machine Learning for Data Analysis(面向数据分析的机器学习)

这门课程关注数据分析里的机器学习,机器学习的过程是一个开发、测试和应用预测算法来实现目标的过程,这门课程以 Regression Modeling in Practice(回归模型实战) 为基础,介绍机器学习中的有监督学习概念,同时从基础的分类算法到决策树以及聚类都会覆盖。通过完成这门课程,你将会学习如何应用、测试和解读机器学习算法用来解决实际问题。

Are you interested in predicting future outcomes using your data? This course helps you do just that! Machine learning is the process of developing, testing, and applying predictive algorithms to achieve this goal. Make sure to familiarize yourself with course 3 of this specialization before diving into these machine learning concepts. Building on Course 3, which introduces students to integral supervised machine learning concepts, this course will provide an overview of many additional concepts, techniques, and algorithms in machine learning, from basic classification to decision trees and clustering. By completing this course, you will learn how to apply, test, and interpret machine learning algorithms as alternative methods for addressing your research questions.

这门课程同时属于卫斯理大学的 数据分析与解读专项课程系列(Data Analysis and Interpretation Specialization)

10. 加州大学圣地亚哥分校的 Machine Learning With Big Data(大数据机器学习)

这门课程关注大数据中的机器学习技术,将会介绍相关的机器学习算法和工具。通过这门课程,你可以学到:通过机器学习过程来设计和利用数据;将机器学习技术用于探索和准备数据来建模;识别机器学习问题的类型;通过广泛可用的开源工具来使用数据构建模型;在Spark中使用大规模机器学习算法分析大数据。

Want to make sense of the volumes of data you have collected? Need to incorporate data-driven decisions into your process? This course provides an overview of machine learning techniques to explore, analyze, and leverage data. You will be introduced to tools and algorithms you can use to create machine learning models that learn from data, and to scale those models up to big data problems. At the end of the course, you will be able to: • Design an approach to leverage data using the steps in the machine learning process. • Apply machine learning techniques to explore and prepare data for modeling. • Identify the type of machine learning problem in order to apply the appropriate set of techniques. • Construct models that learn from data using widely available open source tools. • Analyze big data problems using scalable machine learning algorithms on Spark.

这门课程同时属于 加州大学圣地亚哥分校的大数据专项课程系列(Big Data Specialization)

11. 俄罗斯搜索巨头Yandex推出的 Big Data Applications: Machine Learning at Scale(大数据应用:大规模机器学习)

机器学习正在改变世界,通过这门课程,你将会学习到:识别实战中需要用机器学习算法解决的问题;通过Spark MLLib构建、调参、和应用线性模型;里面文本处理的方法;用决策树和Boost方法解决机器学习问题;构建自己的推荐系统。

Machine learning is transforming the world around us. To become successful, you’d better know what kinds of problems can be solved with machine learning, and how they can be solved. Don’t know where to start? The answer is one button away. During this course you will: - Identify practical problems which can be solved with machine learning - Build, tune and apply linear models with Spark MLLib - Understand methods of text processing - Fit decision trees and boost them with ensemble learning - Construct your own recommender system. As a practical assignment, you will - build and apply linear models for classification and regression tasks; - learn how to work with texts; - automatically construct decision trees and improve their performance with ensemble learning; - finally, you will build your own recommender system! With these skills, you will be able to tackle many practical machine learning tasks. We provide the tools, you choose the place of application to make this world of machines more intelligent.

这门课程同时属于Yandex推出的 面向数据工程师的大数据专项课程系列(Big Data for Data Engineers Specialization)

注:本文首发“课程图谱博客”:http://blog.coursegraph.com ,同步发布到这里, 本文链接地址:http://blog.coursegraph.com/coursera上机器学习课程公开课汇总推荐 http://blog.coursegraph.com/?p=696

从零开始搭建深度学习服务器: 深度学习工具安装(Theano + MXNet)

Deep Learning Specialization on Coursera

这个系列写了好几篇文章,这是相关文章的索引,仅供参考:

以下是相关深度学习工具包的安装,包括Theano, MXNet

4. Theano

Theano虽然官宣不在更新,但是它的价值依然很大,很多早期深度学习工具的底层依然依赖的是它。在Ubuntu下安装Theano有两种模式,一种是通过Conda安装,Theano的官方安装文档给得是这个方式;另外一种是pip安装模式,官方文档没有给出很好的描述,我参考了网上其他的文章,安装过程中遇到了几个小问题,不过顺利解决。首先安装相关的依赖:

sudo apt-get install python-numpy python-scipy python-dev python-pip python-nose g++ libopenblas-dev git

这个时候可以先尝试用pip的方式安装Theano:

pip install Theano

测试时会遇到类似找不到pygpu模块的提示,而这个模块,是无法用pip安装的,必须通过Theano提供的libgpuarray编译,官方安装文档也给了专门的说明

git clone https://github.com/Theano/libgpuarray.git
cd libgpuarray/
mkdir Build
cd Build/
cmake .. -DCMAKE_BUILD_TYPE=Release
make
sudo make install
cd ..
sudo pip install Cython(如果提示cython没有安装需要先安装Cython)
sudo python setup.py build
sudo python setup.py install
sudo ldconfig

还有最后一步,配置文件

vim ~/.theanorc

[global]
floatX=float32
device=cuda
[cuda]
root=/usr/local/cuda
[nvcc]
flags=-D_FORCE_INLINES

然后可以试一下在ipython中导入Theano是否ok:

Python 2.7.13 (default, Jan 19 2017, 14:48:08) 
Type "copyright", "credits" or "license" for more information.
 
IPython 5.1.0 -- An enhanced Interactive Python.
?         -> Introduction and overview of IPython's features.
%quickref -> Quick reference.
help      -> Python's own help system.
object?   -> Details about 'object', use 'object??' for extra details.
 
In [1]: import theano
Using cuDNN version 6021 on context None
Mapped name None to device cuda: GeForce GTX 1080 Ti (0000:05:00.0)

5. MXNet

MXNet的安装还是比较方便的,按照MXNet官方的安装指南,我是在Ubuntu17.04的环境下用virtualenv安装的:

Python2.x的安装方式如下:

如果没有安装python环境和virtualenv,可以先安装:
sudo apt-get update
sudo apt-get install -y python-dev python-virtualenv

然后用virtualenv生成MXNet的虚拟环境:
virtualenv --system-site-packages venv
source venv/bin/activate

要升级pip到最新版(不清楚是为什么):
pip install --upgrade pip

目前MXNet的最新版是1.0:
pip install mxnet-cu80==1.0.0

如果需要可视化训练过程,则可以选择安装graphviz:
sudo apt-get install graphviz
pip install graphviz

最后测试一下MXNet在GPU环境下是否生效:

Python 2.7.13 (default, Nov 23 2017, 15:37:09) 
[GCC 6.3.0 20170406] on linux2
Type "help", "copyright", "credits" or "license" for more information.
>>> import mxnet as mx
Traceback (most recent call last):
  File "<stdin>", line 1, in <module>
  File "/home/textminer/mxnet/venv/local/lib/python2.7/site-packages/mxnet/__init__.py", line 25, in <module>
    from . import engine
  File "/home/textminer/mxnet/venv/local/lib/python2.7/site-packages/mxnet/engine.py", line 23, in <module>
    from .base import _LIB, check_call
  File "/home/textminer/mxnet/venv/local/lib/python2.7/site-packages/mxnet/base.py", line 111, in <module>
    _LIB = _load_lib()
  File "/home/textminer/mxnet/venv/local/lib/python2.7/site-packages/mxnet/base.py", line 103, in _load_lib
    lib = ctypes.CDLL(lib_path[0], ctypes.RTLD_LOCAL)
  File "/usr/lib/python2.7/ctypes/__init__.py", line 362, in __init__
    self._handle = _dlopen(self._name, mode)
OSError: libgfortran.so.3: cannot open shared object file: No such file or directory

报了如上libgfortran.so.3的错误,google了一下,需要安装gfortran:

sudo apt-get install gfortran

再次测试,就没有问题了:

(venv) textminer@textminer:~/mxnet$ python
Python 2.7.13 (default, Nov 23 2017, 15:37:09) 
[GCC 6.3.0 20170406] on linux2
Type "help", "copyright", "credits" or "license" for more information.
>>> import mxnet as mx
>>> a = mx.nd.ones((2,3), mx.gpu())
>>> b = a * 2 + 1
>>> b.asnumpy()
array([[ 3.,  3.,  3.],
       [ 3.,  3.,  3.]], dtype=float32)

Python3.x下的安装基本上过程相同。

注:原创文章,转载请注明出处及保留链接“我爱自然语言处理”:http://www.52nlp.cn

本文链接地址:从零开始搭建深度学习服务器: 深度学习工具安装(Theano + MXNet) http://www.52nlp.cn/?p=10058

深度学习课程及深度学习公开课资源整理

Deep Learning Specialization on Coursera

这里整理一批深度学习课程或者深度学习相关公开课的资源,持续更新,仅供参考。

1. Andrew Ng (吴恩达) 深度学习专项课程 by Coursera and deeplearning.ai

这是 Andrew Ng 老师离开百度后推出的第一个深度学习项目(deeplearning.ai)的一个课程: Deep Learning Specialization ,课程口号是:Master Deep Learning, and Break into AI. 作为 Coursera 联合创始人 和 机器学习网红课程 "Machine Learning" 的授课者,Andrew Ng 老师引领了数百万同学进入了机器学习领域,而这门深度学习课程的口号也透露了他的野心:继续带领百万人进入深度学习的圣地。

作为 Andrew Ng 老师的粉丝,依然推荐这门课程作为深度学习入门课程首选,并且建议花费上 Coursera 上的课程,一方面可以做题,另外还有证书,最重要的是它的编程作业,是理解课程内容的关键点,仅仅看视频绝对是达不到这个效果的。参考:《Andrew Ng 深度学习课程小记》和《Andrew Ng (吴恩达) 深度学习课程小结》。

2. Geoffrey Hinton 大神的 面向机器学习的神经网络(Neural Networks for Machine Learning)

Geoffrey Hinton大神的这门深度学习课程 2012年在 Coursera 上开过一轮,之后一直沉寂,直到 Coursera 新课程平台上线,这门课程已开过多轮次,来自课程图谱网友的评论:

"Deep learning必修课"

"宗派大师+开拓者直接讲课,秒杀一切二流子"

这门深度学习课程相对上面 Andrew Ng深度学习课程有一定难道,但是没有编程作业,只有Quiz.

3. 牛津大学深度学习课程(2015): Deep learning at Oxford 2015

这门深度学习课程名字虽然是 "Machine Learning 2014-2015",不过主要聚焦在深度学习的内容上,可以作为一门很系统的机器学习深度学习课程:

Machine learning techniques enable us to automatically extract features from data so as to solve predictive tasks, such as speech recognition, object recognition, machine translation, question-answering, anomaly detection, medical diagnosis and prognosis, automatic algorithm configuration, personalisation, robot control, time series forecasting, and much more. Learning systems adapt so that they can solve new tasks, related to previously encountered tasks, more efficiently.

The course focuses on the exciting field of deep learning. By drawing inspiration from neuroscience and statistics, it introduces the basic background on neural networks, back propagation, Boltzmann machines, autoencoders, convolutional neural networks and recurrent neural networks. It illustrates how deep learning is impacting our understanding of intelligence and contributing to the practical design of intelligent machines.

视频Playlist:https://www.youtube.com/playlist?list=PLE6Wd9FR--EfW8dtjAuPoTuPcqmOV53Fu

参考:“牛津大学Nando de Freitas主讲的机器学习课程,重点介绍深度学习,还请来Deepmind的Alex Graves和Karol Gregor客座报告,内容、讲解都属一流,强烈推荐! 云: http://t.cn/RA2vSNX

4. Udacity 深度学习(中/英)by Google

Udacity (优达学城)上由Google工程师主讲的免费深度学习课程,结合Google自己的深度学习工具 Tensorflow ,很不错:

机器学习是发展最快、最令人兴奋的领域之一,而深度学习则代表了机器学习中最前沿但也最有风险的一部分。在本课内容中,你将透彻理解深度学习的动机,并设计用于了解复杂和/或大量数据库的智能系统。

我们将教授你如何训练和优化基本神经网络、卷积神经网络和长短期记忆网络。你将通过项目和任务接触完整的机器学习系统 TensorFlow。你将学习解决一系列曾经以为非常具有挑战性的新问题,并在你用深度学习方法轻松解决这些问题的过程中更好地了解人工智能的复杂属性。

我们与 Google 的首席科学家兼 Google 智囊团技术经理 Vincent Vanhoucke 联合开发了本课内容。此课程提供中文版本。

5. Udacity 纳米基石学位项目:深度学习

Udacity的纳米基石学位项目,收费课程,不过据说更注重实战:

人工智能正颠覆式地改变着我们的世界,而背后推动这场进步的,正是深度学习技术。优达学城和硅谷技术明星一起,带来这门帮你系统性入门的课程。你将通过充满活力的硅谷课程内容、独家实战项目和专业代码审阅,快速掌握深度学习的基础知识和前沿应用。

你在实战项目中的每行代码都会获得专业审阅和反馈,还可以在同步学习小组中,接受学长、导师全程的辅导和督促

6. fast.ai 上的深度学习系列课程

fast.ai上提供了几门深度学习课程,课程标语很有意思:Making neural nets uncool again ,并且 Our courses (all are free and have no ads):

Deep Learning Part 1: Practical Deep Learning for Coders
Why we created the course
What we cover in the course
Deep Learning Part 2: Cutting Edge Deep Learning for Coders
Computational Linear Algebra: Online textbook and Videos
Providing a Good Education in Deep Learning—our teaching philosophy
A Unique Path to Deep Learning Expertise—our teaching approach

7. 台大李宏毅老师深度学习课程:Machine Learning and having it Deep and Structured

难得的免费中文深度学习课程:

课程主页:http://speech.ee.ntu.edu.tw/~tlkagk/courses_MLDS17.html
课程视频Playlist: https://www.youtube.com/playlist?list=PLJV_el3uVTsPMxPbjeX7PicgWbY7F8wW9
B站搬运深度学习课程视频: https://www.bilibili.com/video/av9770302/

8. 台大陈缊侬老师深度学习应用课程:Applied Deep Learning / Machine Learning and Having It Deep and Structured

据说是美女老师,这门课程16年秋季开过一次,不过没有视频,最新的这期是17年秋季课程,刚刚开课,Youtube上正在陆续放出课程视频:

16年课程主页,有Slides等相关资料:https://www.csie.ntu.edu.tw/~yvchen/f105-adl/index.html
17年课程主页,资料正在陆续放出:https://www.csie.ntu.edu.tw/~yvchen/f106-adl/
Youtube视频,目前没有playlist,可以关注其官方号放出的视频:https://www.youtube.com/channel/UCyB2RBqKbxDPGCs1PokeUiA/videos

9. Yann Lecun 深度学习公开课

"Yann Lecun 在 2016 年初于法兰西学院开课,这是其中关于深度学习的 8 堂课。当时是用法语授课,后来加入了英文字幕。
作为人工智能领域大牛和 Facebook AI 实验室(FAIR)的负责人,Yann Lecun 身处业内机器学习研究的最前沿。他曾经公开表示,现有的一些机器学习公开课内容已经有些过时。通过 Yann Lecun 的课程能了解到近几年深度学习研究的最新进展。该系列可作为探索深度学习的进阶课程。"

10. 2016 年蒙特利尔深度学习暑期班

推荐理由:看看嘉宾阵容吧,Yoshua Bengio 教授循环神经网络,Surya Ganguli 教授理论神经科学与深度学习理论,Sumit Chopra 教授 reasoning summit 和 attention,Jeff Dean 讲解 TensorFlow 大规模机器学习,Ruslan Salakhutdinov 讲解学习深度生成式模型,Ryan Olson 讲解深度学习的 GPU 编程,等等。

11. 斯坦福大学深度学习应用课程:CS231n: Convolutional Neural Networks for Visual Recognition

这门面向计算机视觉的深度学习课程由Fei-Fei Li教授掌舵,内容面向斯坦福大学学生,货真价实,评价颇高:

Computer Vision has become ubiquitous in our society, with applications in search, image understanding, apps, mapping, medicine, drones, and self-driving cars. Core to many of these applications are visual recognition tasks such as image classification, localization and detection. Recent developments in neural network (aka “deep learning”) approaches have greatly advanced the performance of these state-of-the-art visual recognition systems. This course is a deep dive into details of the deep learning architectures with a focus on learning end-to-end models for these tasks, particularly image classification. During the 10-week course, students will learn to implement, train and debug their own neural networks and gain a detailed understanding of cutting-edge research in computer vision. The final assignment will involve training a multi-million parameter convolutional neural network and applying it on the largest image classification dataset (ImageNet). We will focus on teaching how to set up the problem of image recognition, the learning algorithms (e.g. backpropagation), practical engineering tricks for training and fine-tuning the networks and guide the students through hands-on assignments and a final course project. Much of the background and materials of this course will be drawn from the ImageNet Challenge.

12. 斯坦福大学深度学习应用课程: Natural Language Processing with Deep Learning

这门课程由NLP领域的大牛 Chris Manning 和 Richard Socher 执掌,绝对是学习深度学习自然语言处理的不二法门。

Natural language processing (NLP) is one of the most important technologies of the information age. Understanding complex language utterances is also a crucial part of artificial intelligence. Applications of NLP are everywhere because people communicate most everything in language: web search, advertisement, emails, customer service, language translation, radiology reports, etc. There are a large variety of underlying tasks and machine learning models behind NLP applications. Recently, deep learning approaches have obtained very high performance across many different NLP tasks. These models can often be trained with a single end-to-end model and do not require traditional, task-specific feature engineering. In this winter quarter course students will learn to implement, train, debug, visualize and invent their own neural network models. The course provides a thorough introduction to cutting-edge research in deep learning applied to NLP. On the model side we will cover word vector representations, window-based neural networks, recurrent neural networks, long-short-term-memory models, recursive neural networks, convolutional neural networks as well as some recent models involving a memory component. Through lectures and programming assignments students will learn the necessary engineering tricks for making neural networks work on practical problems.

这门课程融合了两位授课者之前在斯坦福大学的授课课程,分别是自然语言处理课程 cs224n (Natural Language Processing)和面向自然语言处理的深度学习课程 cs224d (Deep Learning for Natural Language Processing).

13. 斯坦福大学深度学习课程: CS 20SI: Tensorflow for Deep Learning Research

准确的说,这门课程主要是针对深度学习工具Tensorflow的:

Tensorflow is a powerful open-source software library for machine learning developed by researchers at Google Brain. It has many pre-built functions to ease the task of building different neural networks. Tensorflow allows distribution of computation across different computers, as well as multiple CPUs and GPUs within a single machine. TensorFlow provides a Python API, as well as a less documented C++ API. For this course, we will be using Python.

This course will cover the fundamentals and contemporary usage of the Tensorflow library for deep learning research. We aim to help students understand the graphical computational model of Tensorflow, explore the functions it has to offer, and learn how to build and structure models best suited for a deep learning project. Through the course, students will use Tensorflow to build models of different complexity, from simple linear/logistic regression to convolutional neural network and recurrent neural networks with LSTM to solve tasks such as word embeddings, translation, optical character recognition. Students will also learn best practices to structure a model and manage research experiments.

14. 牛津大学 & DeepMind 联合的面向NLP的深度学习应用课程: Deep Learning for Natural Language Processing: 2016-2017

课程主页:https://www.cs.ox.ac.uk/teaching/courses/2016-2017/dl/

github课程项目页面:https://github.com/oxford-cs-deepnlp-2017/

课程视频Playlist: https://www.youtube.com/playlist?list=PL613dYIGMXoZBtZhbyiBqb0QtgK6oJbpm

B站搬运视频: https://www.bilibili.com/video/av9817911/

15. 卡耐基梅隆大学(CMU)深度学习应用课程:CMU CS 11-747, Fall 2017 Neural Networks for NLP

课程主页:http://phontron.com/class/nn4nlp2017/

课程视频Playlist: https://www.youtube.com/watch?v=Sss2EA4hhBQ&list=PL8PYTP1V4I8ABXzdqtOpB_eqBlVAz_xPT

16. MIT组织的一个为期一周的深度学习课程: 6.S191: Introduction to Deep Learning http://introtodeeplearning.com/

17. 奈良先端科学技術大学院大学(NAIST) 2014年推出的一个深度学习短期课程(英文授课):Deep Learning and Neural Networks

18. Deep Learning course: lecture slides and lab notebooks

欢迎大家推荐其他没有覆盖到的深度学习课程。

注:本文首发“课程图谱博客”:http://blog.coursegraph.com ,同步发布到这里,原文链接地址:http://blog.coursegraph.com/深度学习课程资源整理,转载请注明出处。

从零开始搭建深度学习服务器: 深度学习工具安装(TensorFlow + PyTorch + Torch)

Deep Learning Specialization on Coursera

这个系列写了好几篇文章,这是相关文章的索引,仅供参考:

以下是相关深度学习工具包的安装,包括Tensorflow, PyTorch, Torch等:

1. TensorFlow:

首先安装libcupti-dev

sudo apt-get install libcupti-dev

然后用 virtualenv 方式安装 Tensorflow(当前是1.4版本)

sudo apt-get install python-pip python-dev python-virtualenv 
mkdir tensorflow
cd tensorflow
virtualenv --system-site-packages venv
source venv/bin/activate
pip install --upgrade tensorflow-gpu

测试GPU:

Python 2.7.12 (default, Nov 19 2016, 06:48:10) 
[GCC 5.4.0 20160609] on linux2
Type "help", "copyright", "credits" or "license" for more information.
>>> import tensorflow as tf
>>> sess = tf.Session(config=tf.ConfigProto(log_device_placement=True))
...
2017-10-24 20:37:24.290049: I tensorflow/core/common_runtime/gpu/gpu_device.cc:955] Found device 0 with properties: 
name: GeForce GTX 1080 Ti
major: 6 minor: 1 memoryClockRate (GHz) 1.6575
pciBusID 0000:01:00.0
Total memory: 10.91GiB
Free memory: 10.52GiB
...
2017-10-24 20:37:24.387363: I tensorflow/core/common_runtime/gpu/gpu_device.cc:955] Found device 1 with properties: 
name: GeForce GTX 1080 Ti
major: 6 minor: 1 memoryClockRate (GHz) 1.6575
pciBusID 0000:02:00.0
Total memory: 10.91GiB
Free memory: 10.76GiB
2017-10-24 20:37:24.388168: I tensorflow/core/common_runtime/gpu/gpu_device.cc:976] DMA: 0 1 
2017-10-24 20:37:24.388176: I tensorflow/core/common_runtime/gpu/gpu_device.cc:986] 0:   Y Y 
2017-10-24 20:37:24.388179: I tensorflow/core/common_runtime/gpu/gpu_device.cc:986] 1:   Y Y 
2017-10-24 20:37:24.388186: I tensorflow/core/common_runtime/gpu/gpu_device.cc:1045] Creating TensorFlow device (/gpu:0) -> (device: 0, name: GeForce GTX 1080 Ti, pci bus id: 0000:01:00.0)
2017-10-24 20:37:24.388189: I tensorflow/core/common_runtime/gpu/gpu_device.cc:1045] Creating TensorFlow device (/gpu:1) -> (device: 1, name: GeForce GTX 1080 Ti, pci bus id: 0000:02:00.0)
Device mapping:
/job:localhost/replica:0/task:0/gpu:0 -> device: 0, name: GeForce GTX 1080 Ti, pci bus id: 0000:01:00.0
/job:localhost/replica:0/task:0/gpu:1 -> device: 1, name: GeForce GTX 1080 Ti, pci bus id: 0000:02:00.0
2017-10-24 20:37:24.449867: I tensorflow/core/common_runtime/direct_session.cc:300] Device mapping:
/job:localhost/replica:0/task:0/gpu:0 -> device: 0, name: GeForce GTX 1080 Ti, pci bus id: 0000:01:00.0
/job:localhost/replica:0/task:0/gpu:1 -> device: 1, name: GeForce GTX 1080 Ti, pci bus id: 0000:02:00.0
>>> 

2. PyTorch:

首先在PyTorch的官网下载对应的pip安装文件:

然后用virtualenv的方式安装,非常方便:

mkdir pytorch
cd pytorch/
virtualenv venv
source venv/bin/activate
pip install /path/to/torch-0.2.0.post3-cp27-cp27mu-manylinux1_x86_64.whl 
pip install torchvision 

3. Torch

首先按照Torch官方的方法进行安装:http://torch.ch/docs/getting-started.html

git clone https://github.com/torch/distro.git ~/torch --recursive
cd ~/torch; bash install-deps;
./install.sh

如无意外,可以顺利安装,如果遇到了如下两个问题,可按下述方法修改:

1) 执行./install.sh时出现Moses>=1.错误

Missing dependencies for nn:moses >= 1.,有时候执行./install.sh时,会出现这个问题。

用这个方法解决:

sudo apt install luarocks
sudo luarocks install moses

2) install.sh 过程中提示“error -- unsupported GNU version! gcc versions later than 5 are not supported!”

ubuntu17.04自带gcc 6.x 版本,所以降级安装gcc 4.9版本解决问题:

sudo apt-get install g++-4.9  
sudo update-alternatives --install /usr/bin/gcc gcc /usr/bin/gcc-4.9 20  
sudo update-alternatives --install /usr/bin/g++ g++ /usr/bin/g++-4.9 20 

成功执行安装脚本后后提示:

Do you want to automatically prepend the Torch install location
to PATH and LD_LIBRARY_PATH in your /home/yourpath/.bashrc? (yes/no)
[yes] >>>
yes

安装脚本会自动将torch的安装路径写入到 .bashrc里,然后输入 th试试:

如果你想用Lua5.2替代LuaJIT的方式安装Torch(If you want to install torch with Lua 5.2 instead of LuaJIT, simply run),可按如下方式安装:

git clone https://github.com/torch/distro.git torch --recursive
cd torch

# clean old torch installation
./clean.sh

在 ~/.bashrec中设置lua的环境:
TORCH_LUA_VERSION=LUA52
并执行 source ~/.bashrc, 然后运行:

./install.sh

遇到第一个问题:

cmake: not found

安装cmake解决:
sudo apt-get install cmake

第二个问题:
readline.c:8:31: fatal error: readline/readline.h: 没有那个文件或目录

安装libreadine-dev解决:
sudo apt-get install libreadline-dev

第三个问题:安装过程依然提示“error -- unsupported GNU version! gcc versions later than 5 are not supported!”

ubuntu17.04自带gcc 6.x 版本,所以降级安装gcc 4.9版本解决问题:

sudo apt-get install g++-4.9
sudo update-alternatives --install /usr/bin/gcc gcc /usr/bin/gcc-4.9 20
sudo update-alternatives --install /usr/bin/g++ g++ /usr/bin/g++-4.9 20

安装完毕依然会提示:

Not updating your shell profile.
You might want to
add the following lines to your shell profile:

. /home/textminer/torch/torch/install/bin/torch-activate

在 ~/.profile 文件末尾加上这行 ". /home/textminer/torch/torch/install/bin/torch-activate " 并执行 source ~/.profile,然后输入 th试试。

注:原创文章,转载请注明出处及保留链接“我爱自然语言处理”:http://www.52nlp.cn

本文链接地址:从零开始搭建深度学习服务器: 深度学习工具安装(TensorFlow + PyTorch + Torch) http://www.52nlp.cn/?p=10008

从零开始搭建深度学习服务器: 基础环境配置(Ubuntu + GTX 1080 TI + CUDA + cuDNN)

Deep Learning Specialization on Coursera

这个系列写了好几篇文章,这是相关文章的索引,仅供参考:

去年上半年配置了一台GTX1080深度学习主机:深度学习主机攒机小记,然后分别写了两篇深度学习环境配置的文章:深度学习主机环境配置: Ubuntu16.04+Nvidia GTX 1080+CUDA8.0深度学习主机环境配置: Ubuntu16.04+GeForce GTX 1080+TensorFlow,得到了很多同学留言,不过这个一年多以前完成的深度学习环境配置方案显得有些落伍了。这一年里,深度学习领域继续高歌猛进,包括 Andrew Ng 也离开百度出来创业了,他的第一个项目是deeplearning.ai,和Coursera合作推出了一个深度学习专项课程系列: Andrew Ng 深度学习课程小记。另外GTX1080的升级版1080TI显卡的发售也刺激了深度学习服务器的配置升级,我也机缘巧合的配置了3台1080TI深度学习服务器:从零开始搭建深度学习服务器:硬件选择。同时深度学习工具的开发迭代速度也惊人,Theano在完成了自己的历史使命后选择了停止更新,以这样的方式了退出了深度学习的舞台,而 TensorFlow,Torch,Pytorch 等工具和周边也发展迅猛。因为一次偶然事件,我又一次为老机器重装了系统环境,并且选则了最新的cuda9, cudnn7.0等基础工具版本: 深度学习服务器环境配置: Ubuntu17.04+Nvidia GTX 1080+CUDA 9.0+cuDNN 7.0+TensorFlow 1.3。不过回过头来,发现这种源代码方式编译 TensorFlow GPU 版本的方式在国内的网络环境下并不方便,而我更喜欢 CUDA8 + cuDNN6 + Tensorflow + Pytorch + Torch 的安装方案,简明扼要并且比较方便,于是在新的深度学习主机里我分别在Ubunu17.04和Ubuntu16.04的系统环境下配置了这样的深度学习服务器环境,下面就是相关的安装记录,希望这能成为一份简单的深度学习服务器环境配置指南。

1. 安装Ubuntu系统: Ubuntu16.04 或者 Ubuntu17.04

从Ubuntu官方直接下载Ubuntu镜像(Ubuntu16.04或者Ubuntu17.04,采用的是desktop amd64版本),用U盘和Ubuntu镜像制作安装盘。在MAC下制作 Ubuntu USB 安装盘的方法可参考: 在MAC下使用ISO制作Linux的安装USB盘,之后通过Bios引导U盘启动安装Ubuntu系统。如果安装的时候出现类似黑屏或者类似 "nouveau ... fifo ..."之类的报错信息,重启电脑,进入安装界面时候长按e,进入图形界面,按F6,选择 nomodeset 或者手动添加,进行Ubuntu系统的安装。参考《深度学习主机环境配置: Ubuntu16.04+Nvidia GTX 1080+CUDA8.0》。

2. Source源和Pip源设置:

系统安装完毕后建议设置一下source源和pip源,这样可以加速安装相关的工具包。

cd /etc/apt/
sudo cp sources.list sources.list.bak
sudo vi sources.list

对于Ubuntu16.04,我用的是阿里云的源,把下面的这些源添加到source.list文件头部:

deb-src http://archive.ubuntu.com/ubuntu xenial main restricted #Added by software-properties
deb http://mirrors.aliyun.com/ubuntu/ xenial main restricted
deb-src http://mirrors.aliyun.com/ubuntu/ xenial main restricted multiverse universe #Added by software-properties
deb http://mirrors.aliyun.com/ubuntu/ xenial-updates main restricted
deb-src http://mirrors.aliyun.com/ubuntu/ xenial-updates main restricted multiverse universe #Added by software-properties
deb http://mirrors.aliyun.com/ubuntu/ xenial universe
deb http://mirrors.aliyun.com/ubuntu/ xenial-updates universe
deb http://mirrors.aliyun.com/ubuntu/ xenial multiverse
deb http://mirrors.aliyun.com/ubuntu/ xenial-updates multiverse
deb http://mirrors.aliyun.com/ubuntu/ xenial-backports main restricted universe multiverse
deb-src http://mirrors.aliyun.com/ubuntu/ xenial-backports main restricted universe multiverse #Added by software-properties
deb http://archive.canonical.com/ubuntu xenial partner
deb-src http://archive.canonical.com/ubuntu xenial partner
deb http://mirrors.aliyun.com/ubuntu/ xenial-security main restricted
deb-src http://mirrors.aliyun.com/ubuntu/ xenial-security main restricted multiverse universe #Added by software-properties
deb http://mirrors.aliyun.com/ubuntu/ xenial-security universe
deb http://mirrors.aliyun.com/ubuntu/ xenial-security multiverse

对于Ubuntu17.04,我使用的是网易的源:

deb http://mirrors.163.com/ubuntu/ zesty main restricted universe multiverse
deb http://mirrors.163.com/ubuntu/ zesty-security main restricted universe multiverse
deb http://mirrors.163.com/ubuntu/ zesty-updates main restricted universe multiverse
deb http://mirrors.163.com/ubuntu/ zesty-proposed main restricted universe multiverse
deb http://mirrors.163.com/ubuntu/ zesty-backports main restricted universe multiverse
deb-src http://mirrors.163.com/ubuntu/ zesty main restricted universe multiverse
deb-src http://mirrors.163.com/ubuntu/ zesty-security main restricted universe multiverse
deb-src http://mirrors.163.com/ubuntu/ zesty-updates main restricted universe multiverse
deb-src http://mirrors.163.com/ubuntu/ zesty-proposed main restricted universe multiverse
deb-src http://mirrors.163.com/ubuntu/ zesty-backports main restricted universe multiverse

最后更新一下:

sudo apt-get update
sudo apt-get upgrade

另外一个事情是将pip源指向阿里云的源镜像:http://mirrors.aliyun.com/help/pypi,具体添加一个 ~/.config/pip/pip.conf 文件,设置为:

[global]
trusted-host =  mirrors.aliyun.com
index-url = http://mirrors.aliyun.com/pypi/simple

或者清华的pip源,刚好安装的那两天清华的pip源抽风,所以就换阿里云的了。

3. 安装1080TI显卡驱动:

sudo apt-get purge nvidia*
sudo add-apt-repository ppa:graphics-drivers/ppa
sudo apt-get update && sudo apt-get install nvidia-384 nvidia-settings

安装完毕后重启机器,运行 nvidia-smi,看看生效的显卡驱动:

4. 安装CUDA:

因为Tensorflow和Pytorch目前官方提供的PIP版本只支持CUDA8, 所以我选择了安装CUDA8.0。不过目前英文达官方网站的 CUDA-TOOLKIT页面默认提供的是CUDA9.0的下载,所以需要在英文达官方提供的另一个 CUDA Toolkit Archive 页面选择CUDA8,这个页面包含了CUDA所有的历史版本和当前的CUDA9.0版本。点击 CUDA Toolkit 8.0 GA2 (Feb 2017) 这个页面,选择"cuda-repo-ubuntu1604-8-0-local-ga2_8.0.61-1_amd64.deb" 和 "cuBLAS Patch Update to CUDA 8":

sudo dpkg -i cuda-repo-ubuntu1604-8-0-local-ga2_8.0.61-1_amd64.deb
sudo apt-get update
sudo apt-get install cuda

如果之前没有安装上述"cuBLAS Patch Update to CUDA 8",可以用如下方式安装更新:

sudo dpkg -i cuda-repo-ubuntu1604-8-0-local-cublas-performance-update_8.0.61-1_amd64.deb
sudo apt-get update  
sudo apt-get upgrade cuda

在 ~/.bashrc 中设置环境变量:

export PATH=/usr/local/cuda/bin${PATH:+:${PATH}}
export LD_LIBRARY_PATH=/usr/local/cuda/lib64${LD_LIBRARY_PATH:+:${LD_LIBRARY_PATH}}
export CUDA_HOME=/usr/local/cuda

运行 source ~/.bashrc 使其生效

4. 安装cuDNN:

cuDNN7.0 虽然出来了,但是 CUDA8 的最佳拍档依然是cuDNN6.0,在NIVIDA开发者官网上,找到cudnn的下载页面: https://developer.nvidia.com/rdp/cudnn-download ,选择"Download cuDNN v6.0 (April 27, 2017), for CUDA 8.0" 中的 "cuDNN v6.0 Library for Linux":

下载后安装非常简单,就是解压然后拷贝到相应的系统CUDA路径下,注意最后一行拷贝时 "-d"不能少, 否则会提示.so不是symbol link:

tar -zxvf cudnn-8.0-linux-x64-v6.0.tgz 
sudo cp cuda/include/cudnn.h /usr/local/cuda/include/
sudo cp cuda/lib64/libcudnn* /usr/local/cuda/lib64/ -d

以上是安装均在Ubunt16.04和Ubuntu17.04环境下测试通过,最后鉴于最近一些相关文章评论有同学留言无法从官方下载CUDA和cuDNN,亲测可能与国内环境有关,我将cuda8.0, cuda9.0, cudnn6.0, cudnn7.0的相关工具包上传到了百度网盘,提供两个下载地址:

CUDA8.0 & CUDA9.0下载地址:链接: https://pan.baidu.com/s/1gfaS4lt 密码 ddji ,包括:

1) CUDA8.0 for Ubuntu16.04: cuda-repo-ubuntu1604-8-0-local-ga2_8.0.61-1_amd64.deb
2) CUDA8.0 for Ubuntu16.04 更新: cuda-repo-ubuntu1604-8-0-local-cublas-performance-update_8.0.61-1_amd64
3) CUDA9.0 for Ubuntu16.04: cuda-repo-ubuntu1604-9-0-local_9.0.176-1_amd64.deb
4) CUDA9.0 for Ubuntu17.04: cuda-repo-ubuntu1704-9-0-local_9.0.176-1_amd64

cuDNN6.0 & cuDNN7.0下载地址:链接: https://pan.baidu.com/s/1qXIZqpA 密码 cwch ,包括:

1) cudnn6.0 for CUDA8: cudnn-8.0-linux-x64-v6.0.tgz
2) cudnn7.0 for CUDA8: cudnn-8.0-linux-x64-v7.tgz
3) cudnn7.0 for CUDA9: cudnn-9.0-linux-x64-v7.tgz

注:原创文章,转载请注明出处及保留链接“我爱自然语言处理”:http://www.52nlp.cn

本文链接地址:从零开始搭建深度学习服务器: 基础环境配置(Ubuntu + GTX 1080 TI + CUDA + cuDNN) http://www.52nlp.cn/?p=9823

Andrew Ng 深度学习课程系列第四门课程卷积神经网络开课

Deep Learning Specialization on Coursera

Andrew Ng 深度学习课程系列第四门课程卷积神经网络(Convolutional Neural Networks)将于11月6日开课 ,不过课程资料已经放出,现在注册课程已经可以听课了 ,这门课程属于Coursera上的深度学习专项系列 ,这个系列有5门课,前三门已经开过好几轮,但是第4、第5门课程一直处于待定状态,新的一轮将于11月7号开始,感兴趣的同学可以关注:Deep Learning Specialization

This course will teach you how to build convolutional neural networks and apply it to image data. Thanks to deep learning, computer vision is working far better than just two years ago, and this is enabling numerous exciting applications ranging from safe autonomous driving, to accurate face recognition, to automatic reading of radiology images. You will: - Understand how to build a convolutional neural network, including recent variations such as residual networks. - Know how to apply convolutional networks to visual detection and recognition tasks. - Know to use neural style transfer to generate art. - Be able to apply these algorithms to a variety of image, video, and other 2D or 3D data. This is the fourth course of the Deep Learning Specialization.

个人认为这是目前互联网上最适合入门深度学习的课程系列了,Andrew Ng 老师善于讲课,另外用Python代码抽丝剥茧扣作业,课程学起来非常舒服,参考我之前写得两篇小结:

Andrew Ng 深度学习课程小记

Andrew Ng (吴恩达) 深度学习课程小结

额外推荐: 深度学习课程资源整理