标签归档:深度学习

斯坦福大学深度学习自然语言处理课程CS224N 2019 全20个视频分享

近期一直关注着斯坦福大学深度学习自然语言处理课程CS224N在油管上的视频更新情况,直到昨天看到他们分享了第20个视频资源:

Stanford CS224N: NLP with Deep Learning | Winter 2019 | Lecture 20 – Future of NLP + Deep Learning

结合斯坦福大学CS224n官网课程Schedule,大概率这门课程的视频官方应该分享完了:CS224n: Natural Language Processing with Deep Learning Stanford / Winter 2019

通过youtube-dl以及bypy两个神器这里再次更新一下CS224n的20个课程视频,感兴趣的同学可以关注我们的公众号AINLP,回复'cs224n'获取全部视频合集:

最后列一下cs224N的相关资源:

课程主页:
http://web.stanford.edu/class/cs224n/index.html

官方课程视频网站:
http://onlinehub.stanford.edu/cs224

官方油管视频List:
https://www.youtube.com/playlist?list=PLoROMvodv4rOhcuXMZkNm7j3fVwBBY42z

课程除视频以为的相关资料都可以从schedule下载,包括ppt等:
http://web.stanford.edu/class/cs224n/index.html#schedule

课程优秀项目网站:
http://web.stanford.edu/class/cs224n/project.html

B站视频链接:
https://www.bilibili.com/video/av46216519

参考:
2019斯坦福CS224n深度学习自然语言处理课程视频和相关资料分享

Start your future on Coursera today.

中文分词文章索引和分词数据资源分享

昨天在AINLP公众号上分享了乐雨泉同学的投稿文章:《分词那些事儿》,有同学留言表示"不过瘾",我想了想,其实我爱自然语言处理博客上已经积攒了不少中文分词的文章,除了基于深度学习的分词方法还没有探讨外,“古典”机器学习时代的中文分词方法都有涉及,从基于词典的中文分词(最大匹配法),到基于统计的分词方法(HMM、最大熵模型、条件随机场模型CRF),再到Mecab、NLTK中文分词,都有所涉及。回头看,这些文章最早的大概有10年了,现在看有些稚嫩,可能不适宜再放到公众号上推了,但是这里做个索引,感兴趣的同学可以在博客上阅读,基本上都是有代码可以参考的。

中文分词入门系列

rickjin老大的两篇日文翻译文档,很有帮助

其他同学在52nlp博客上分享的中文分词相关文章,感谢大家

最后关于中文分词的数据资源,多说两句,中文分词的研究时间比较长,方法比较多,从实际经验看,好的词库资源可能更重要一些,最后提供一份中文分词的相关资源,包括中文分词字标注法全文pdf文档,以及web上其他同学分享的词库资源,感兴趣的同学可以关注AINLP,回复“fenci"获取:

注:原创文章,转载请注明出处及保留链接“我爱自然语言处理”:http://www.52nlp.cn

本文链接地址:中文分词文章索引和分词数据资源分享 http://www.52nlp.cn/?p=11408

Start your future on Coursera today.

2019斯坦福CS224n深度学习自然语言处理课程视频和相关资料分享

斯坦福大学2019年新一季的CS224n深度学习自然语言处理课程(CS224n: Natural Language Processing with Deep Learning-Stanford/Winter 2019)1月份已经开课,不过视频资源一直没有对外放出,直到前几天官方在油管上更新了前5节视频:CS224n: Natural Language Processing with Deep Learning | Winter 2019

这门自然语言处理课程是值得每个NLPer学习的NLP课程,由 Christopher Manning 大神坐镇主讲,面向斯坦福大学的学生,在斯坦福大学已经讲授很多年。此次2019年新课,有很多更新,除了增加一些新内容外,最大的一点大概是代码由Tensorflow迁移到PyTorch:

这几年,由于深度学习、人工智能的概念的普及和推广,NLP作为AI领域的一颗明珠也逐渐广为人知,很多同学由此进入这个领域或者转行进入这个领域。Manning大神在第一堂课的视频开头之处给学生找位子(大概还有很多同学站着),同时开玩笑的说他在斯坦福大学讲授自然语言处理课程的第一个十年,平均每次选课的学生大约只有45个。

这门课程的主要目标是希望学生:能学到现代深度学习相关知识,特别是和NLP相关的一些知识点;能从宏观上了解人类语言以及理解和产生人类语言的难度;能理解和用代码(PyTorch)实习NLP中的一些主要问题和人物,例如词义理解、依存句法分析、机器翻译、问答系统等。

关于课程视频,目前官方只放出了前5节课程视频,我下载了一份放到了百度网盘里,感兴趣的同学可以关注AINLP,回复"cs224n"获取,这份视频会持续更新,直到完整版,欢迎关注:


继续阅读

Start your future on Coursera today.

Geoffrey Hinton 大神面向机器学习的神经网络公开课及相关视频资料

Geoffrey Hinton 大神的"面向机器学习的神经网络(Neural Networks for Machine Learning)"公开课早在2012年就在 Coursera 上开过一轮,之后一直沉寂,直到 Coursera 新课程平台上线,这门经典课程已开过多轮次,之前我们在《深度学习课程资源整理》隆重推荐过。

1月15日,Geoffrey Hinton 大神在twitter上宣布:

My Coursera MOOC "Neural Networks for Machine Learning" was prepared in 2012 and is now seriously out of date so I have asked them to discontinue the course. But the lectures are still a good introduction to many of the basic ideas and are available at https://www.cs.toronto.edu/~hinton/coursera_lectures.html

大意是这门在Coursera上的MOOC课程是在2012年准备的,现在有点过时了,所以要求他们(Coursera)停止提供这门课程。但是这门深度学习课程依然是介绍神经网络相关基础概念的好资料,所以课程视频依然保留在多伦多大学hinton大神的主页下,感兴趣的同学可以直接观看:https://www.cs.toronto.edu/~hinton/coursera_lectures.html

我试了一下Coursera,发现如果之前注册过,还能打开这门课程,但是一旦是非登录状态后,这门课程已经无法在Coursera上找到了:

https://www.coursera.org/learn/neural-networks

这样稍微有点遗憾,不能在Coursera上做相关的Quiz,感兴趣的同学可以参考课程图谱上早期关于这门课程的评论:

http://coursegraph.com/coursera_neuralnets

“宗派大师+开拓者直接讲课,秒杀一切二流子!”

“巨牛级别的人物来开课,我也不说啥了。”

“还有什么好说的呢?Deep Learning必修课程啊!”

该课程最后在Coursera上开课的时间大概在2018年11月份:

http://coursegraph.com/coursera-neural-networks

最后,如果你觉得访问多伦多Hinton教授主页那个教程页面不方便,这里提供早期从Coursera上下载的课程版本,包括视频、PPT、英文字幕等,关注AINLP公众号,回复“hinton"获取:

注:本文首发于“课程图谱博客”:http://blog.coursegraph.com

本文链接地址:Geoffrey Hinton 大神面向机器学习的神经网络公开课及相关视频资料 http://blog.coursegraph.com/?p=985

Start your future on Coursera today.

风云三尺剑,花鸟一床书---对联数据集和自动对联机器人

很多年前看到过微软的自动对联工具,写了一篇《机器翻译与微软对联》博文,赞了MSRA用统计机器翻译(SMT)的思路做自动对联系统,当时开玩笑的说:

微软研究院的这个“对联语料库”的规模是67万对,所采用的技术是他们自己的web语料库自动获取技术。开玩笑的说,如果周明老师能给我这个语料库,我也能几天之内构建一个简单的“52nlp自动对联系统”。

前段时间看到了一份对联语料:couplet-dataset

https://github.com/wb14123/couplet-dataset

这份数据包含70万条对联数据,按字切分,作者很用心的给大家准备了训练集、测试集还有词汇表;同时还开源了一个基于Tensorflow的深度学习工具来训练自动对联模型: seq2seq-couplet

https://github.com/wb14123/seq2seq-couplet

感兴趣的同学可以直接上手操作,作者甚至还提供了Demo供大家把玩,不过目前貌似需要科学上网才能访问:

https://ai.binwang.me/couplet/

对我来说,看到这份数据的第一想法就是用神经网络机器翻译(NMT)的思路来尝试自动对联系统,这里NMT开源工具可选择的范围很广,我还是选择了Marian,跑了一个简单的对联“翻译”模型,现在接入AINLP公众号聊天机器人,感兴趣的朋友可以一试。具体方法请关注AINLP公众号,然后后台和AINLP聊天机器人互动:

回复“上联 输入上联内容” ,AINLP机器人将自动回复“下联 自动对联内容”,例如:

例子1:
上联 风云三尺剑
自动回复:
下联 花鸟一床书

注意上图来自微软亚洲研究院电脑对联页面:https://duilian.msra.cn/

其他例子可参考:

关于AINLP公众号相关信息,可参考:AINLP公众号索引、关键字和其他相关资源

注:原创文章,转载请注明出处及保留链接“我爱自然语言处理”:http://www.52nlp.cn

本文链接地址:风云三尺剑,花鸟一床书---对联数据集和自动对联机器人 http://www.52nlp.cn/?p=11145

Start your future on Coursera today.

AI Challenger 2018 简记

这两天在北京参加了 AI Challenger 2018 总决赛,这次又有点小幸运拿到了英中机器翻译决赛第5名,不过整个过程和去年的《AI Challenger 2017 奇遇记》有所不同。去年参加比赛的定位是“学”,学习NMT的相关知识和调研相关工具;今年参加比赛的定位是“用”,用熟悉的NMT工具。

与去年相比,今年的 AI Challenger 机器翻译赛道做了“优化”,首先没有了同传赛道,这个赛道去年因为有了“同传”二字吓走了一批人,其次最高奖金也降了,降到了20万,所以感觉相比于其他两个文本挖掘赛道,英中文本机器翻译赛道要冷清一些,另外一个原因可能是机器翻译的千万中英双语句对语料对机器资源的要求要高一些。

另外今年 AI Challenger 英中文本机器翻译大赛虽然语料还是口语领域的,但是额外增加了Document上下文语料,也是本次比赛新的命题点和关注点:
继续阅读

Start your future on Coursera today.

谷歌云平台上基于TensorFlow的高级机器学习专项课程

Coursera近期推了一门新专项课程:谷歌云平台上基于TensorFlow的高级机器学习专项课程(Advanced Machine Learning with TensorFlow on Google Cloud Platform Specialization),看起来很不错。这个系列包含5门子课程,涵盖端到端机器学习、生产环境机器学习系统、图像理解、面向时间序列和自然语言处理的序列模型、推荐系统等内容,感兴趣的同学可以关注:Learn Advanced Machine Learning with Google Cloud. Build production-ready machine learning models with TensorFlow on Google Cloud Platform.

课程链接:http://coursegraph.com/coursera-specializations-advanced-machine-learning-tensorflow-gcp
继续阅读

Start your future on Coursera today.

AI Challenger 2018 文本挖掘类竞赛相关解决方案及代码汇总

AI Challenger 2018 已近尾声,各赛道top选手已经结束了代码核验,正在准备12月18、19日 AI Challenger 决赛答辩材料的路上。在本年度 AI Challenger 即将尘埃落定之时,这里整理一批目前网上可见的文本挖掘相关赛道的解决方案和代码,欢迎补充,同时感谢github,感谢各位开源的同学。

细粒度用户评论情感分析

在线评论的细粒度情感分析对于深刻理解商家和用户、挖掘用户情感等方面有至关重要的价值,并且在互联网行业有极其广泛的应用,主要用于个性化推荐、智能搜索、产品反馈、业务安全等。本次比赛我们提供了一个高质量的海量数据集,共包含6大类20个细粒度要素的情感倾向。参赛人员需根据标注的细粒度要素的情感倾向建立算法,对用户评论进行情感挖掘,组委将通过计算参赛者提交预测值和场景真实值之间的误差确定预测正确率,评估所提交的预测算法。

貌似是最火爆的一个赛道,Testa 提交队伍有468支,详细介绍请参考该赛道主页:https://challenger.ai/competition/fsauor2018
继续阅读

Start your future on Coursera today.

Andrew Ng 老师新推的通俗人工智能课程以及其他相关资料

Andrew Ng 老师是我的偶像,他在普及机器学习和深度学习的道路上纵情向前,这不他又在 Coursera 上新推了一门通俗人工智能课程:AI For Everyone(全民AI) :

http://coursegraph.com/coursera-ai-for-everyone

这门课程面向大众进行AI科普,将于2019年年初开课,目前已经可以注册课程。AI不仅适用于工程师,这门非技术性人工智能课程将帮助学习者了解机器学习和深度学习等相关技术,以及将AI应用于自己组织中的问题和机会。 通过这门课程,学习者将会了解当前人工智能可以或者不能做的事情。最后,学习者将了解AI如何影响社会以及我们将如何应对这种技术变革。

AI is not only for engineers. This non-technical course will help you understand technologies like machine learning and deep learning and spot opportunities to apply AI to problems in your own organization. You will see examples of what today’s AI can – and cannot – do. Finally, you will understand how AI is impacting society and how to navigate through this technological change.

If you are a non-technical business leader, “AI for Everyone” will help you understand how to build a sustainable AI strategy. If you are a machine learning engineer or data scientist, this is the course to ask your manager, VP or CEO to take if you want them to understand what you can (and cannot!) do.

继续阅读

Start your future on Coursera today.

深度学习实践:从零开始做电影评论文本情感分析

最近读了《Python深度学习》, 是一本好书,很棒,隆重推荐。

本书由Keras之父、现任Google人工智能研究员的弗朗索瓦•肖莱(François Chollet)执笔,详尽介绍了用Python和Keras进行深度学习的探索实践,涉及计算机视觉、自然语言处理、生成式模型等应用。书中包含30多个代码示例,步骤讲解详细透彻。由于本书立足于人工智能的可达性和大众化,读者无须具备机器学习相关背景知识即可展开阅读。在学习完本书后,读者将具备搭建自己的深度学习环境、建立图像识别模型、生成图像和文字等能力。

各方面都很好,但是总感觉哪里有点欠缺,后来想想,可能是作者做得太好了,把数据预处理都做得好好的,所以你才能“20行搞定情感分析”,这可能也是学习其他深度学习工具过程中要面临的一个问题,很多工具都提供了预处理好的数据,导致学习过程中只需要调用相关接口即可。不过在实际工作中,数据的预处理是非常重要的,从数据获取,到数据清洗,再到基本的数据处理,例如中文需要分词,英文需要Tokenize, Truecase或者Lowercase等,还有去停用词等等,在将数据“喂”给工具之前,有很多事情要做。这个部分,貌似是当前一些教程有所欠缺的地方,所以才有了这个“从零开始做”的想法和系列,准备弥补一下这个缺失,第一个例子就拿《Python深度学习》这本书第一个文本挖掘例子练手:电影评论文本分类-二分类问题,这也可以归结为一个情感分析任务。

首先介绍一下这个原始的电影评论数据集aclIMDB: Large Movie Review Dataset, 这个数据集由斯坦福大学人工智能实验室于2011年推出,包含25000条训练数据和25000条测试数据,另外包含约50000条没有标签的辅助数据。训练集和测试集又分别包含12500条正例(正向评价pos)和12500负例(负向评价neg)。关于数据,更详细的介绍可参考该数据集的官网:http://ai.stanford.edu/~amaas/data/sentiment/, paper: Learning Word Vectors for Sentiment Analysis, 和数据集里的readme。

然后下载和处理这份数据:Large Movie Review Dataset v1.0,下载链接;

http://ai.stanford.edu/~amaas/data/sentiment/aclImdb_v1.tar.gz

下载之后进行解压:tar -zxvf aclImdb.tar.gz,可以用tree命令看一下aclImdb的目录结构:

tree aclImdb -L 2

继续进入训练集正例的目录看一下: cd aclImdb/train/pos/:

这个里面包含了12500篇英文评论,我们随机打开一个看一下里面的文本内容:

vim 1234_10.txt

I grew up watching this movie ,and I still love it just as much today as when i was a kid. Don't listen to the critic reviews. They are not accurate on this film.Eddie Murphy really shines in his roll.You can sit down with your whole family and everybody will enjoy it.I recommend this movie to everybody to see. It is a comedy with a touch of fantasy.With demons ,dragons,and a little bald kid with God like powers.This movie takes you from L.A. to Tibet , of into the amazing view of the wondrous temples of the mountains in Tibet.Just a beautiful view! So go do your self a favor and snatch this one up! You wont regret it!

继续阅读

Start your future on Coursera today.