如何计算两个文档的相似度（三）

作者52nlp

6 月 7, 2013

1、数据准备

Writing II: Rhetorical Composing
Genetics and Society: A Course for Educators
General Game Playing
Genes and the Human Condition (From Behavior to Biotechnology)
A Brief History of Humankind
New Models of Business in Society
Analyse Numérique pour Ingénieurs
Evolution: A Course for Educators
Coding the Matrix: Linear Algebra through Computer Science Applications
The Dynamic Earth: A Course for Educators
...

>>> courses = [line.strip() for line in file('coursera_corpus')]
>>> courses_name = [course.split('\t')[0] for course in courses]
>>> print courses_name[0:10]
['Writing II: Rhetorical Composing', 'Genetics and Society: A Course for Educators', 'General Game Playing', 'Genes and the Human Condition (From Behavior to Biotechnology)', 'A Brief History of Humankind', 'New Models of Business in Society', 'Analyse Num\xc3\xa9rique pour Ing\xc3\xa9nieurs', 'Evolution: A Course for Educators', 'Coding the Matrix: Linear Algebra through Computer Science Applications', 'The Dynamic Earth: A Course for Educators']

2、引入NLTK
NTLK是著名的Python自然语言处理工具包，但是主要针对的是英文处理，不过课程图谱目前处理的课程数据主要是英文，因此也足够了。NLTK配套有文档，有语料库，有书籍，甚至国内有同学无私的翻译了这本书: 用Python进行自然语言处理，有时候不得不感慨：做英文自然语言处理的同学真幸福。

>>> import nltk

>>> from nltk.corpus import brown
'BROWN CORPUS\n\nA Standard Corpus of Present-Day Edited American\nEnglish, for use with Digital Computers.\n\nby W. N. Francis and H. Kucera (1964)\nDepartment of Linguistics, Brown University\nProvidence, Rhode Island, USA\n\nRevised 1971, Revised and Amplified 1979\n\nhttp://www.hit.uib.no/icame/brown/bcm.html\n\nDistributed with the permission of the copyright holder,\nredistribution permitted.\n'
>>> brown.words()[0:10]
['The', 'Fulton', 'County', 'Grand', 'Jury', 'said', 'Friday', 'an', 'investigation', 'of']
>>> brown.tagged_words()[0:10]
[('The', 'AT'), ('Fulton', 'NP-TL'), ('County', 'NN-TL'), ('Grand', 'JJ-TL'), ('Jury', 'NN-TL'), ('said', 'VBD'), ('Friday', 'NR'), ('an', 'AT'), ('investigation', 'NN'), ('of', 'IN')]
>>> len(brown.words())
1161192

>>> texts_lower = [[word for word in document.lower().split()] for document in courses]
>>> print texts_lower[0]
['writing', 'ii:', 'rhetorical', 'composing', 'rhetorical', 'composing', 'engages', 'you', 'in', 'a', 'series', 'of', 'interactive', 'reading,', 'research,', 'and', 'composing', 'activities', 'along', 'with', 'assignments', 'designed', 'to', 'help', 'you', 'become', 'more', 'effective', 'consumers', 'and', 'producers', 'of', 'alphabetic,', 'visual', 'and', 'multimodal', 'texts.', 'join', 'us', 'to', 'become', 'more', 'effective', 'writers...', 'and', 'better', 'citizens.', 'rhetorical', 'composing', 'is', 'a', 'course', 'where', 'writers', 'exchange', 'words,', 'ideas,', 'talents,', 'and', 'support.', 'you', 'will', 'be', 'introduced', 'to', 'a', ...

>>> from nltk.tokenize import word_tokenize
>>> texts_tokenized = [[word.lower() for word in word_tokenize(document.decode('utf-8'))] for document in courses]
>>> print texts_tokenized[0]
['writing', 'ii', ':', 'rhetorical', 'composing', 'rhetorical', 'composing', 'engages', 'you', 'in', 'a', 'series', 'of', 'interactive', 'reading', ',', 'research', ',', 'and', 'composing', 'activities', 'along', 'with', 'assignments', 'designed', 'to', 'help', 'you', 'become', 'more', 'effective', 'consumers', 'and', 'producers', 'of', 'alphabetic', ',', 'visual', 'and', 'multimodal', 'texts.', 'join', 'us', 'to', 'become', 'more', 'effective', 'writers', '...', 'and', 'better', 'citizens.', 'rhetorical', 'composing', 'is', 'a', 'course', 'where', 'writers', 'exchange', 'words', ',', 'ideas', ',', 'talents', ',', 'and', 'support.', 'you', 'will', 'be', 'introduced', 'to', 'a', ...

>>> from nltk.corpus import stopwords
>>> english_stopwords = stopwords.words('english')
>>> print english_stopwords
['i', 'me', 'my', 'myself', 'we', 'our', 'ours', 'ourselves', 'you', 'your', 'yours', 'yourself', 'yourselves', 'he', 'him', 'his', 'himself', 'she', 'her', 'hers', 'herself', 'it', 'its', 'itself', 'they', 'them', 'their', 'theirs', 'themselves', 'what', 'which', 'who', 'whom', 'this', 'that', 'these', 'those', 'am', 'is', 'are', 'was', 'were', 'be', 'been', 'being', 'have', 'has', 'had', 'having', 'do', 'does', 'did', 'doing', 'a', 'an', 'the', 'and', 'but', 'if', 'or', 'because', 'as', 'until', 'while', 'of', 'at', 'by', 'for', 'with', 'about', 'against', 'between', 'into', 'through', 'during', 'before', 'after', 'above', 'below', 'to', 'from', 'up', 'down', 'in', 'out', 'on', 'off', 'over', 'under', 'again', 'further', 'then', 'once', 'here', 'there', 'when', 'where', 'why', 'how', 'all', 'any', 'both', 'each', 'few', 'more', 'most', 'other', 'some', 'such', 'no', 'nor', 'not', 'only', 'own', 'same', 'so', 'than', 'too', 'very', 's', 't', 'can', 'will', 'just', 'don', 'should', 'now']
>>> len(english_stopwords)
127

>>> texts_filtered_stopwords = [[word for word in document if not word in english_stopwords] for document in texts_tokenized]
>>> print texts_filtered_stopwords[0]
['writing', 'ii', ':', 'rhetorical', 'composing', 'rhetorical', 'composing', 'engages', 'series', 'interactive', 'reading', ',', 'research', ',', 'composing', 'activities', 'along', 'assignments', 'designed', 'help', 'become', 'effective', 'consumers', 'producers', 'alphabetic', ',', 'visual', 'multimodal', 'texts.', 'join', 'us', 'become', 'effective', 'writers', '...', 'better', 'citizens.', 'rhetorical', 'composing', 'course', 'writers', 'exchange', 'words', ',', 'ideas', ',', 'talents', ',', 'support.', 'introduced', 'variety', 'rhetorical', 'concepts\xe2\x80\x94that', ',', 'ideas', 'techniques', 'inform', 'persuade', 'audiences\xe2\x80\x94that', 'help', 'become', 'effective', 'consumer', 'producer', 'written', ',', 'visual', ',', 'multimodal', 'texts.', 'class', 'includes', 'short', 'videos', ',', 'demonstrations', ',', 'activities.', 'envision', 'rhetorical', 'composing', 'learning', 'community', 'includes', 'enrolled', 'course', 'instructors.', 'bring', 'expertise', 'writing', ',', 'rhetoric', 'course', 'design', ',', 'designed', 'assignments', 'course', 'infrastructure', 'help', 'share', 'experiences', 'writers', ',', 'students', ',', 'professionals', 'us.', 'collaborations', 'facilitated', 'wex', ',', 'writers', 'exchange', ',', 'place', 'exchange', 'work', 'feedback']

>>> english_punctuations = [',', '.', ':', ';', '?', '(', ')', '[', ']', '&', '!', '*', '@', '#', '\$', '%']

>>> texts_filtered = [[word for word in document if not word in english_punctuations] for document in texts_filtered_stopwords]
>>> print texts_filtered[0]
['writing', 'ii', 'rhetorical', 'composing', 'rhetorical', 'composing', 'engages', 'series', 'interactive', 'reading', 'research', 'composing', 'activities', 'along', 'assignments', 'designed', 'help', 'become', 'effective', 'consumers', 'producers', 'alphabetic', 'visual', 'multimodal', 'texts.', 'join', 'us', 'become', 'effective', 'writers', '...', 'better', 'citizens.', 'rhetorical', 'composing', 'course', 'writers', 'exchange', 'words', 'ideas', 'talents', 'support.', 'introduced', 'variety', 'rhetorical', 'concepts\xe2\x80\x94that', 'ideas', 'techniques', 'inform', 'persuade', 'audiences\xe2\x80\x94that', 'help', 'become', 'effective', 'consumer', 'producer', 'written', 'visual', 'multimodal', 'texts.', 'class', 'includes', 'short', 'videos', 'demonstrations', 'activities.', 'envision', 'rhetorical', 'composing', 'learning', 'community', 'includes', 'enrolled', 'course', 'instructors.', 'bring', 'expertise', 'writing', 'rhetoric', 'course', 'design', 'designed', 'assignments', 'course', 'infrastructure', 'help', 'share', 'experiences', 'writers', 'students', 'professionals', 'us.', 'collaborations', 'facilitated', 'wex', 'writers', 'exchange', 'place', 'exchange', 'work', 'feedback']

>>> from nltk.stem.lancaster import LancasterStemmer
>>> st = LancasterStemmer()
>>> st.stem('stemmed')
'stem'
>>> st.stem('stemming')
'stem'
>>> st.stem('stemmer')
'stem'
>>> st.stem('running')
'run'
>>> st.stem('maximum')
'maxim'
>>> st.stem('presumably')
'presum'

>>> texts_stemmed = [[st.stem(word) for word in docment] for docment in texts_filtered]
>>> print texts_stemmed[0]
['writ', 'ii', 'rhet', 'compos', 'rhet', 'compos', 'eng', 'sery', 'interact', 'read', 'research', 'compos', 'act', 'along', 'assign', 'design', 'help', 'becom', 'effect', 'consum', 'produc', 'alphabet', 'vis', 'multimod', 'texts.', 'join', 'us', 'becom', 'effect', 'writ', '...', 'bet', 'citizens.', 'rhet', 'compos', 'cours', 'writ', 'exchang', 'word', 'idea', 'tal', 'support.', 'introduc', 'vary', 'rhet', 'concepts\xe2\x80\x94that', 'idea', 'techn', 'inform', 'persuad', 'audiences\xe2\x80\x94that', 'help', 'becom', 'effect', 'consum', 'produc', 'writ', 'vis', 'multimod', 'texts.', 'class', 'includ', 'short', 'video', 'demonst', 'activities.', 'envid', 'rhet', 'compos', 'learn', 'commun', 'includ', 'enrol', 'cours', 'instructors.', 'bring', 'expert', 'writ', 'rhet', 'cours', 'design', 'design', 'assign', 'cours', 'infrastruct', 'help', 'shar', 'expery', 'writ', 'stud', 'profess', 'us.', 'collab', 'facilit', 'wex', 'writ', 'exchang', 'plac', 'exchang', 'work', 'feedback']

>>> all_stems = sum(texts_stemmed, [])
>>> stems_once = set(stem for stem in set(all_stems) if all_stems.count(stem) == 1)
>>> texts = [[stem for stem in text if stem not in stems_once] for text in texts_stemmed]

3、引入gensim

>>> from gensim import corpora, models, similarities
>>> import logging
>>> logging.basicConfig(format='%(asctime)s : %(levelname)s : %(message)s', level=logging.INFO)

>>> dictionary = corpora.Dictionary(texts)
2013-06-07 21:37:07,120 : INFO : adding document #0 to Dictionary(0 unique tokens)
2013-06-07 21:37:07,263 : INFO : built Dictionary(3341 unique tokens) from 379 documents (total 46417 corpus positions)

>>> corpus = [dictionary.doc2bow(text) for text in texts]

>>> tfidf = models.TfidfModel(corpus)
2013-06-07 21:58:30,490 : INFO : collecting document frequencies
2013-06-07 21:58:30,490 : INFO : PROGRESS: processing document #0
2013-06-07 21:58:30,504 : INFO : calculating IDF weights for 379 documents and 3341 features (29166 matrix non-zeros)

>>> corpus_tfidf = tfidf[corpus]

>>> lsi = models.LsiModel(corpus_tfidf, id2word=dictionary, num_topics=10)

>>> index = similarities.MatrixSimilarity(lsi[corpus])
2013-06-07 22:04:55,443 : INFO : scanning corpus to determine the number of features
2013-06-07 22:04:55,510 : INFO : creating matrix for 379 documents and 10 features

>>> print courses_name[210]
Machine Learning

>>> ml_course = texts[210]
>>> ml_bow = dicionary.doc2bow(ml_course)
>>> ml_lsi = lsi[ml_bow]
>>> print ml_lsi
[(0, 8.3270084238788673), (1, 0.91295652151975082), (2, -0.28296075112669405), (3, 0.0011599008827843801), (4, -4.1820134980024255), (5, -0.37889856481054851), (6, 2.0446999575052125), (7, 2.3297944485200031), (8, -0.32875594265388536), (9, -0.30389668455507612)]
>>> sims = index[ml_lsi]
>>> sort_sims = sorted(enumerate(sims), key=lambda item: -item[1])

>>> print sort_sims[0:10]
[(210, 1.0), (174, 0.97812241), (238, 0.96428639), (203, 0.96283489), (63, 0.9605484), (189, 0.95390636), (141, 0.94975704), (184, 0.94269753), (111, 0.93654782), (236, 0.93601125)]

>>> print courses_name[210]
Machine Learning

>>> print courses_name[174]
Machine Learning

>>> print courses_name[238]
Probabilistic Graphical Models

>>> print courses_name[203]
Neural Networks for Machine Learning

作者 52nlp

《如何计算两个文档的相似度（三）》有113条评论
1. 其实我不太明白你这个问题，文档本身是query指的是文档本身已经映射到query向量了吗？

[回复]

道如那 回复:

计算语料中文档（doc1,doc2,doc3，...）之间的相似度，而不是语料中文档跟外部query之间的相似度。我再看了一下老师您的文章，是不是这个部分已经计算出了语料中所有文档之间的相似度？
index = similarities.MatrixSimilarity(lsi[corpus])

[回复]

52nlp 回复:

其实你之前给得那个API接口就可以的，会依次输入每个文档和其他文档计算的相似度结果，我的一个测试结果：

In [116]: for similarities in index:
.....: print similarities
.....:
[ 0.99999994 0.99349093 0.99999994 0.99998897 0.99890161 -0.09886808
-0.06243003 -0.03453361 0.1831941 ]
[ 0.99349093 0.99999994 0.99351043 0.99294722 0.99773723 0.01512812
0.0516649 0.07953398 0.29398471]
[ 0.99999994 0.99351043 1. 0.99998826 0.99890959 -0.09869774
-0.06225919 -0.03436255 0.18336238]
[ 0.99998897 0.99294722 0.99998826 1. 0.99867147 -0.10352203
-0.06709816 -0.0392084 0.17859331]
[ 0.99890161 0.99773723 0.99890959 0.99867147 1. -0.05213219
-0.01559597 0.01233324 0.22905678]
[-0.09886808 0.01512812 -0.09869774 -0.10352203 -0.05213219 0.99999994
0.99933177 0.99792129 0.96014822]
[-0.06243003 0.0516649 -0.06225919 -0.06709816 -0.01559597 0.99933177
1. 0.99960995 0.96972233]
[-0.03453361 0.07953398 -0.03436255 -0.0392084 0.01233324 0.99792129
0.99960995 1. 0.97616404]
[ 0.1831941 0.29398471 0.18336238 0.17859331 0.22905678 0.96014822
0.96972233 0.97616404 1. ]

[回复]

道如那 回复:

明白了 谢谢您的解答！

2. Yugeng Liu说道：

为什么每次跑的结果不一样？

[回复]

52nlp 回复:

不清楚，是差异很大还是微小差异？

[回复]

3. lijing说道：

老师，您好，我按照您的方法训练了40万篇语料，每次查询新的文章来计算相似度，第一次计算要319.69ms，之后每次查询需要 79.52ms ; 也就是说，我平均一分钟只能查询13次，请问如何实现批量查询？非常感谢

[回复]

52nlp 回复:

[回复]

4. 单世超说道：

老师好：
1.ml_lsi = lsi[ml_bow] 预测这里不需要 把文本向量 转换为 tfidf 吗？
2. 不太理解这里 lsi 和 index 的数据类型。分别可以通过 [ ] 方式 得到文档的主题向量，和 其他文档与查询文档的相似度？

[回复]

5. 孙伟说道：

标点符号其实可以用python标准库string.punctuation

[回复]

52nlp 回复:

是的，谢谢

[回复]

6. pengyulong说道：

您好，这篇文章写得很详细，也披露了很多处理语料的细节，谢谢分享。但是我这里还有一个问题：
你这里计算的文本的相似度都是只query与语料库corpus中的某一条语料之间的相似度，请问如何求两段文本(sen1,sen2)之间的相似度呢？这里的sen1，sen2均不在语料corpus中。如果能得到解答，万分感谢。

[回复]

52nlp 回复:

将两个文本映射到向量空间中，然后用训练好的模型计算就可以了

[回复]